Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,701)

Search Parameters:
Keywords = photogrammetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 17617 KiB  
Article
Integration of a Mobile Laser Scanning System with a Forest Harvester for Accurate Localization and Tree Stem Measurements
by Tamás Faitli, Eric Hyyppä, Heikki Hyyti, Teemu Hakala, Harri Kaartinen, Antero Kukko, Jesse Muhojoki and Juha Hyyppä
Remote Sens. 2024, 16(17), 3292; https://doi.org/10.3390/rs16173292 - 4 Sep 2024
Viewed by 252
Abstract
Automating forest machines to optimize the forest value chain requires the ability to map the surroundings of the machine and to conduct accurate measurements of nearby trees. In the near-to-medium term, integrating a forest harvester with a mobile laser scanner system may have [...] Read more.
Automating forest machines to optimize the forest value chain requires the ability to map the surroundings of the machine and to conduct accurate measurements of nearby trees. In the near-to-medium term, integrating a forest harvester with a mobile laser scanner system may have multiple applications, including real-time assistance of the harvester operator using laser-scanner-derived tree measurements and the collection of vast amounts of training data for large-scale airborne laser scanning-based surveys at the individual tree level. In this work, we present a comprehensive processing flow for a mobile laser scanning (MLS) system mounted on a forest harvester starting from the localization of the harvester under the forest canopy followed by accurate and automatic estimation of tree attributes, such as diameter at breast height (DBH) and stem curve. To evaluate our processing flow, we recorded and processed MLS data from a commercial thinning operation on three test strips with a total driven length ranging from 270 to 447 m in a managed Finnish spruce forest stand containing a total of 658 reference trees within a distance of 15 m from the harvester trajectory. Localization reference was obtained by a robotic total station, while reference tree attributes were derived using a high-quality handheld laser scanning system. As some applications of harvester-based MLS require real-time capabilities while others do not, we investigated the positioning accuracy both for real-time localization of the harvester and after the optimization of the full trajectory. In the real-time positioning mode, the absolute localization error was on average 2.44 m, while the corresponding error after the full optimization was 0.21 m. Applying our automatic stem diameter estimation algorithm for the constructed point clouds, we measured DBH and stem curve with a root-mean-square error (RMSE) of 3.2 cm and 3.6 cm, respectively, while detecting approximately 90% of the reference trees with DBH>20 cm that were located within 15 m from the harvester trajectory. To achieve these results, we demonstrated a distance-adjusted bias correction method mitigating diameter estimation errors caused by the high beam divergence of the laser scanner used. Full article
(This article belongs to the Special Issue Remote Sensing and Smart Forestry II)
Show Figures

Figure 1

21 pages, 7746 KiB  
Article
Multi-Robot Collaborative Mapping with Integrated Point-Line Features for Visual SLAM
by Yu Xia, Xiao Wu, Tao Ma, Liucun Zhu, Jingdi Cheng and Junwu Zhu
Sensors 2024, 24(17), 5743; https://doi.org/10.3390/s24175743 - 4 Sep 2024
Viewed by 134
Abstract
Simultaneous Localization and Mapping (SLAM) enables mobile robots to autonomously perform localization and mapping tasks in unknown environments. Despite significant progress achieved by visual SLAM systems in ideal conditions, relying solely on a single robot and point features for mapping in large-scale indoor [...] Read more.
Simultaneous Localization and Mapping (SLAM) enables mobile robots to autonomously perform localization and mapping tasks in unknown environments. Despite significant progress achieved by visual SLAM systems in ideal conditions, relying solely on a single robot and point features for mapping in large-scale indoor environments with weak-texture structures can affect mapping efficiency and accuracy. Therefore, this paper proposes a multi-robot collaborative mapping method based on point-line fusion to address this issue. This method is designed for indoor environments with weak-texture structures for localization and mapping. The feature-extraction algorithm, which combines point and line features, supplements the existing environment point feature-extraction method by introducing a line feature-extraction step. This integration ensures the accuracy of visual odometry estimation in scenes with pronounced weak-texture structure features. For relatively large indoor scenes, a scene-recognition-based map-fusion method is proposed in this paper to enhance mapping efficiency. This method relies on visual bag of words to determine overlapping areas in the scene, while also proposing a keyframe-extraction method based on photogrammetry to improve the algorithm’s robustness. By combining the Perspective-3-Point (P3P) algorithm and Bundle Adjustment (BA) algorithm, the relative pose-transformation relationships of multi-robots in overlapping scenes are resolved, and map fusion is performed based on these relative pose relationships. We evaluated our algorithm on public datasets and a mobile robot platform. The experimental results demonstrate that the proposed algorithm exhibits higher robustness and mapping accuracy. It shows significant effectiveness in handling mapping in scenarios with weak texture and structure, as well as in small-scale map fusion. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

20 pages, 4282 KiB  
Article
Optical Target Projector: Principle of Functioning and Basic Performance Test
by Junzhen Meng, Yabing Xuan and Guiping Huang
Sensors 2024, 24(17), 5728; https://doi.org/10.3390/s24175728 - 3 Sep 2024
Viewed by 226
Abstract
Faced with measurement conditions such as high-temperature forging, strict prohibition of surface contamination, and toxic environments, using the projection point of an optical target projector (referred to as an “optical projector”) as a photogrammetric target has become a necessary method of high-precision industrial [...] Read more.
Faced with measurement conditions such as high-temperature forging, strict prohibition of surface contamination, and toxic environments, using the projection point of an optical target projector (referred to as an “optical projector”) as a photogrammetric target has become a necessary method of high-precision industrial photogrammetry. In connection with the current industrial demand, we have analyzed the principles of optical projectors and introduced their optical characteristics and advantages in the field of industrial photogrammetry. On this basis, a series of tests such as brightness, roundness, and so on were conducted to determine the basic properties of the optical projector. A set of performance test methods including inner coincidence accuracy and outer coincidence accuracy were proposed; the tests included industrial photogrammetry system measurement repeatability, surface measurement precision, and a comparison test with laser tracker. The test conditions used optical projection points as the photogrammetry targets. The test results showed that the coordinate measurement repeatability of the industrial photogrammetry system is 0.010 mm, and the surface measurement precision is 0.007 mm under the condition of a single optical projector station, with little difference between the results under the condition of pasting retro-reflective targets. In the process of the comparison test with laser tracker, the image quality of the black measurement object obtained is obviously inferior to other surfaces, so the analysis of the point projector is greatly affected by the color of the measured object and other conditions, which provides a reference for the measurement object and application range of the industrial photogrammetric system based on optical targets. The results demonstrate the applicability and reliability of using the optical projection point of an optical projector as target points for photogrammetry. Full article
Show Figures

Graphical abstract

20 pages, 2618 KiB  
Article
Enhanced Tailings Dam Beach Line Indicator Observation and Stability Numerical Analysis: An Approach Integrating UAV Photogrammetry and CNNs
by Kun Wang, Zheng Zhang, Xiuzhi Yang, Di Wang, Liyi Zhu and Shuai Yuan
Remote Sens. 2024, 16(17), 3264; https://doi.org/10.3390/rs16173264 - 3 Sep 2024
Viewed by 227
Abstract
Tailings ponds are recognized as significant sources of potential man-made debris flow and major environmental disasters. Recent frequent tailings dam failures and growing trends in fine tailings outputs underscore the critical need for innovative monitoring and safety management techniques. Here, we propose an [...] Read more.
Tailings ponds are recognized as significant sources of potential man-made debris flow and major environmental disasters. Recent frequent tailings dam failures and growing trends in fine tailings outputs underscore the critical need for innovative monitoring and safety management techniques. Here, we propose an approach that integrates UAV photogrammetry with convolutional neural networks (CNNs) to extract beach line indicators (BLIs) and conduct enhanced dam safety evaluations. The significance of real 3D geometry construction in numerical analysis is investigated. The results demonstrate that the optimized You Only Look At CoefficienTs (YOLACT) model outperforms in recognizing the beach boundary line, achieving a mean Intersection over Union (mIoU) of 72.63% and a mean Pixel Accuracy (mPA) of 76.2%. This approach shows promise for future integration with autonomously charging UAVs, enabling comprehensive coverage and automated monitoring of BLIs. Additionally, the anti-slide and seepage stability evaluations are impacted by the geometry shape and water condition configuration. The proposed approach provides more conservative seepage calculations, suggesting that simplified 2D modeling may underestimate tailings dam stability, potentially affecting dam designs and regulatory decisions. Multiple numerical methods are suggested for cross-validation. This approach is crucial for balancing safety regulations with economic feasibility, helping to prevent excessive and unsustainable burdens on enterprises and advancing towards the goal of zero harm to people and the environment in tailings management. Full article
Show Figures

Figure 1

22 pages, 15853 KiB  
Article
A New Precise Point Positioning with Ambiguity Resolution (PPP-AR) Approach for Ground Control Point Positioning for Photogrammetric Generation with Unmanned Aerial Vehicles
by Hasan Bilgehan Makineci, Burhaneddin Bilgen and Sercan Bulbul
Drones 2024, 8(9), 456; https://doi.org/10.3390/drones8090456 - 2 Sep 2024
Viewed by 481
Abstract
Unmanned aerial vehicles (UAVs) are now widely preferred systems that are capable of rapid mapping and generating topographic models with relatively high positional accuracy. Since the integrated GNSS receivers of UAVs do not allow for sufficiently accurate outcomes either horizontally or vertically, a [...] Read more.
Unmanned aerial vehicles (UAVs) are now widely preferred systems that are capable of rapid mapping and generating topographic models with relatively high positional accuracy. Since the integrated GNSS receivers of UAVs do not allow for sufficiently accurate outcomes either horizontally or vertically, a conventional method is to use ground control points (GCPs) to perform bundle block adjustment (BBA) of the outcomes. Since the number of GCPs to be installed limits the process in UAV operations, there is an important research question whether the precise point positioning (PPP) method can be an alternative when the real-time kinematic (RTK), network RTK, and post-process kinematic (PPK) techniques cannot be used to measure GCPs. This study introduces a novel approach using precise point positioning with ambiguity resolution (PPP-AR) for ground control point (GCP) positioning in UAV photogrammetry. For this purpose, the results are evaluated by comparing the horizontal and vertical coordinates obtained from the 24 h GNSS sessions of six calibration pillars in the field and the horizontal length differences obtained by electronic distance measurement (EDM). Bartlett’s test is applied to statistically determine the accuracy of the results. The results indicate that the coordinates obtained from a two-hour PPP-AR session show no significant difference from those acquired in a 30 min session, demonstrating PPP-AR to be a viable alternative for GCP positioning. Therefore, the PPP technique can be used for the BBA of GCPs to be established for UAVs in large-scale map generation. However, the number of GCPs to be selected should be four or more, which should be homogeneously distributed over the study area. Full article
Show Figures

Figure 1

15 pages, 5689 KiB  
Article
Modelling Water Availability in Livestock Ponds by Remote Sensing: Enhancing Management in Iberian Agrosilvopastoral Systems
by Francisco Manuel Castaño-Martín, Álvaro Gómez-Gutiérrez and Manuel Pulido-Fernández
Remote Sens. 2024, 16(17), 3257; https://doi.org/10.3390/rs16173257 - 2 Sep 2024
Viewed by 337
Abstract
Extensive livestock farming plays a crucial role in the economy of agrosilvopastoral systems of the southwestern Iberian Peninsula (known as dehesas and montados in Spanish and Portuguese, respectively) as well as providing essential ecosystem services. The existence of livestock in these areas heavily [...] Read more.
Extensive livestock farming plays a crucial role in the economy of agrosilvopastoral systems of the southwestern Iberian Peninsula (known as dehesas and montados in Spanish and Portuguese, respectively) as well as providing essential ecosystem services. The existence of livestock in these areas heavily relies on the effective management of natural resources (annual pastures and water stored in ponds built ad hoc). The present work aims to assess the water availability in these ponds by developing equations to estimate the water volume based on the surface area, which can be quantified by means of remote sensing techniques. For this purpose, field surveys were carried out in September 2021, 2022 and 2023 at ponds located in representative farms, using unmanned aerial vehicles (UAVs) equipped with RGB sensors and survey-grade global navigation satellite systems and inertial measurement units (GNSS-IMU). These datasets were used to produce high-resolution 3D models by means of Structure-from-Motion and Multi-View Stereo photogrammetry, facilitating the estimation of the stored water volume within a Geographic Information System (GIS). The Volume–Area–Height relationships were calibrated to allow conversions between these parameters. Regression analyses were performed using the maximum volume and area data to derive mathematical models (power and quadratic functions) that resulted in significant statistical relationships (r2 > 0.90, p < 0.0001). The root mean square error (RMSE) varied from 1.59 to 17.06 m3 and 0.16 to 3.93 m3 for the power and quadratic function, respectively. Both obtained equations (i.e., power and quadratic general functions) were applied to the estimated water storage in similar water bodies using available aerial or satellite imagery for the period from 1984 to 2021. Full article
Show Figures

Figure 1

4 pages, 3381 KiB  
Proceeding Paper
Integrating Drone-Captured Sub-Catchment Topography with Multiphase CFD Modelling to Enhance Urban Stormwater Management
by Katrin Kaur, Ivar Annus, Murel Truu, Nils Kändler and Iris Paalmäe
Eng. Proc. 2024, 69(1), 31; https://doi.org/10.3390/engproc2024069031 - 2 Sep 2024
Viewed by 82
Abstract
In this study, a drone-captured spatial data point cloud is used as input for creating a high-resolution modelling domain that accurately represents urban stormwater sub-catchments’ topography. The objective is to map possibilities, showcase the potential, and establish an in-house workflow that is as [...] Read more.
In this study, a drone-captured spatial data point cloud is used as input for creating a high-resolution modelling domain that accurately represents urban stormwater sub-catchments’ topography. The objective is to map possibilities, showcase the potential, and establish an in-house workflow that is as efficient as possible for the high-resolution modelling of stormwater runoff in urban sub-catchments, to provide input for improving urban stormwater management. The computational fluid dynamics model simulation results are compared to geographic information system-based analysis data and field observations, illustrating the benefits and limitations of the approach. Full article
Show Figures

Figure 1

20 pages, 17320 KiB  
Article
Automated Photogrammetric Tool for Landslide Recognition and Volume Calculation Using Time-Lapse Imagery
by Zhipeng Liang, Fabio Gabrieli, Antonio Pol and Lorenzo Brezzi
Remote Sens. 2024, 16(17), 3233; https://doi.org/10.3390/rs16173233 - 31 Aug 2024
Viewed by 330
Abstract
Digital photogrammetry has attracted widespread attention in the field of geotechnical and geological surveys due to its low-cost, ease of use, and contactless mode. In this work, with the purpose of studying the progressive block surficial detachments of a landslide, we developed a [...] Read more.
Digital photogrammetry has attracted widespread attention in the field of geotechnical and geological surveys due to its low-cost, ease of use, and contactless mode. In this work, with the purpose of studying the progressive block surficial detachments of a landslide, we developed a monitoring system based on fixed multi-view time-lapse cameras. Thanks to a newly developed photogrammetric algorithm based on the comparison of photo sequences through a structural similarity metric and the computation of the disparity map of two convergent views, we can quickly detect the occurrence of collapse events, determine their location, and calculate the collapse volume. With the field data obtained at the Perarolo landslide site (Belluno Province, Italy), we conducted preliminary tests of the effectiveness of the algorithm and its accuracy in the volume calculation. The method of quickly and automatically obtaining the collapse information proposed in this paper can extend the potential of landslide monitoring systems based on videos or photo sequence and it will be of great significance for further research on the link between the frequency of collapse events and the driving factors. Full article
(This article belongs to the Special Issue Remote Sensing in Civil and Environmental Engineering)
Show Figures

Figure 1

16 pages, 10786 KiB  
Article
Spatiotemporal Patterns and Equity Analysis of Premature Mortality Due to Ischemic Heart Disease Attributable to PM2.5 Exposure in China: 2007–2022
by Yanling Zhong, Yong Guo, Dingming Liu, Qiutong Zhang and Lizheng Wang
Toxics 2024, 12(9), 641; https://doi.org/10.3390/toxics12090641 - 31 Aug 2024
Viewed by 300
Abstract
Long-term exposure to PM2.5 pollution increases the risk of cardiovascular diseases, particularly ischemic heart disease (IHD). Current assessments of the health effects related to PM2.5 exposure are limited by sparse ground monitoring stations and applicable disease research cohorts, making accurate health [...] Read more.
Long-term exposure to PM2.5 pollution increases the risk of cardiovascular diseases, particularly ischemic heart disease (IHD). Current assessments of the health effects related to PM2.5 exposure are limited by sparse ground monitoring stations and applicable disease research cohorts, making accurate health effect evaluations challenging. Using satellite-observed aerosol optical depth (AOD) data and the XGBoost-PM25 model, we obtained 1 km scale PM2.5 exposure levels across China. We quantified the premature mortality caused by PM2.5-exposure-induced IHD using the Global Exposure Mortality Model (GEMM) and baseline mortality data. Furthermore, we employed the Gini coefficient, a measure from economics to quantify inequality, to evaluate the distribution differences in health impacts due to PM2.5 exposure under varying socioeconomic conditions. The results indicate that PM2.5 concentrations in China are higher in the central and eastern regions. From 2007 to 2022, the national overall level showed a decreasing trend, dropping from 47.41 μg/m3 to 25.16 μg/m3. The number of premature deaths attributable to PM2.5 exposure increased from 819 thousand in 2007 to 870 thousand in 2022, with fluctuations in certain regions. This increase is linked to population growth and aging because PM2.5 levels have decreased. The results also indicate disparities in premature mortality from IHD among different economic groups in China from 2007 to 2022, with middle-income groups having a higher cumulative proportion of IHD-related premature deaths compared with high- and low-income groups. Despite narrowing GDP gaps across regions from 2007 to 2022, IHD consistently “favored” the middle-income groups. The highest Gini coefficient was observed in the Northwest (0.035), and the lowest was in the South (0.019). Targeted policy interventions are essential to establish a more equitable atmospheric environment. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

18 pages, 32081 KiB  
Article
Monitoring and Law Analysis of Secondary Deformation on the Surface of Multi-Coal Seam Mining in Closed Mines
by Xiaofei Liu, Jiangtao Wang, Sen Du, Kazhong Deng, Guoliang Chen and Xipeng Qin
Remote Sens. 2024, 16(17), 3223; https://doi.org/10.3390/rs16173223 - 30 Aug 2024
Viewed by 377
Abstract
A large number of mines have been closed due to resource depletion, failure to meet safety production requirements, and other reasons. To effectively ensure the safety of the ecological environment above these closed mines along with the safety of engineering construction, it is [...] Read more.
A large number of mines have been closed due to resource depletion, failure to meet safety production requirements, and other reasons. To effectively ensure the safety of the ecological environment above these closed mines along with the safety of engineering construction, it is necessary to monitor the secondary deformation of closed mines. Based on TerraSAR-X, Sentinel-1A data, and InSAR technology, this study obtained high-density secondary surface deformation data on the Jiahe Coal Mine and Pangzhuang Coal Mine in the western Xuzhou area. Combining mining geological data, we analyzed the spatiotemporal variation patterns and mechanisms of secondary deformation in multi-seam mining of closed mines. It was found that when mining multiple seams involves large interlayer spacing, the secondary deformation pattern shows a “W” shape. In this situation, the deformation can be divided into five stages: subsidence, uplift, re-subsidence, re-uplift, and relative stability. This study provides technical support for the evaluation and prevention of secondary deformation hazards in closed mines. Full article
Show Figures

Figure 1

25 pages, 7270 KiB  
Article
DIPHORM: An Innovative DIgital PHOtogrammetRic Monitoring Technique for Detecting Surficial Displacements of Landslides
by Lorenzo Brezzi, Fabio Gabrieli, Davide Vallisari, Edoardo Carraro, Antonio Pol, Antonio Galgaro and Simonetta Cola
Remote Sens. 2024, 16(17), 3199; https://doi.org/10.3390/rs16173199 - 29 Aug 2024
Viewed by 456
Abstract
Monitoring surface displacements of landslides is essential for evaluating their evolution and the effectiveness of mitigation works. Traditional methods like robotic total stations (RTSs) and GNSS provide high-accuracy measurements but are limited to discrete points, potentially missing the broader landslide’s behavior. On the [...] Read more.
Monitoring surface displacements of landslides is essential for evaluating their evolution and the effectiveness of mitigation works. Traditional methods like robotic total stations (RTSs) and GNSS provide high-accuracy measurements but are limited to discrete points, potentially missing the broader landslide’s behavior. On the contrary, laser scanner surveys offer accurate 3D representations of slopes and the possibility of inferring their movements, but they are often limited to infrequent, high-cost surveys. Monitoring techniques based on ground-based digital photogrammetry may represent a new, robust, and cost-effective alternative. This study demonstrates the use of multi-temporal images from fixed and calibrated cameras to achieve the 3D reconstruction of landslide displacements. The method presented offers the important benefit of obtaining spatially dense displacement data across the entire camera view and quasi-continuous temporal measurement. This paper outlines the framework for this prototyping technique, along with a description of the necessary hardware and procedural steps. Furthermore, strengths and weaknesses are discussed based on the activities carried out in a landslide case study in northeastern Italy. The results from the photo-monitoring are reported, discussed, and compared with traditional topographical data, validating the reliability of this new approach in monitoring the time evolution of surface displacements across the entire landslide area. Full article
(This article belongs to the Special Issue Remote Sensing in Civil and Environmental Engineering)
Show Figures

Figure 1

18 pages, 3730 KiB  
Article
Temporal Monitoring of Simulated Burials in an Arid Environment Using RGB/Multispectral Sensor Unmanned Aerial Vehicles
by Abdullah Alawadhi, Constantine Eliopoulos and Frederic Bezombes
Drones 2024, 8(9), 444; https://doi.org/10.3390/drones8090444 - 29 Aug 2024
Viewed by 298
Abstract
For the first time, RGB and multispectral sensors deployed on UAVs were used to facilitate grave detection in a desert location. The research sought to monitor surface anomalies caused by burials using manual and enhanced detection methods, which was possible up to 18 [...] Read more.
For the first time, RGB and multispectral sensors deployed on UAVs were used to facilitate grave detection in a desert location. The research sought to monitor surface anomalies caused by burials using manual and enhanced detection methods, which was possible up to 18 months. Near-IR (NIR) and Red-Edge bands were the most suitable for manual detection, with a 69% and 31% success rate, respectively. Meanwhile, the enhanced method results varied depending on the sensor. The standard Reed–Xiaoli Detector (RXD) algorithm and Uniform Target Detector (UTD) algorithm were the most suitable for RGB data, with 56% and 43% detection rates, respectively. For the multispectral data, the percentages varied between the algorithms with a hybrid of the RXD and UTD algorithms yielding a 56% detection rate, the UTD algorithm 31%, and the RXD algorithm 13%. Moreover, the research explored identifying grave mounds using the normalized digital surface model (nDSM) and evaluated using the normalized difference vegetation index (NDVI) in grave detection. nDSM successfully located grave mounds at heights as low as 1 cm. A noticeable difference in NDVI values was observed between the graves and their surroundings, regardless of the extreme weather conditions. The results support the potential of using RGB and multispectral sensors mounted on UAVs for detecting burial sites in an arid environment. Full article
Show Figures

Figure 1

16 pages, 1555 KiB  
Article
A Linear Regression Approach for Best Scanline Determination in the Object to Image Space Transformation Using Pushbroom Images
by Seyede Shahrzad Ahooei Nezhad, Mohammad Javad Valadan Zoej, Fahimeh Youssefi and Ebrahim Ghaderpour
Sensors 2024, 24(17), 5594; https://doi.org/10.3390/s24175594 - 29 Aug 2024
Viewed by 254
Abstract
The use of linear array pushbroom images presents a new challenge in photogrammetric applications when it comes to transforming object coordinates to image coordinates. To address this issue, the Best Scanline Search/Determination (BSS/BSD) field focuses on obtaining the Exterior Orientation Parameters (EOPs) of [...] Read more.
The use of linear array pushbroom images presents a new challenge in photogrammetric applications when it comes to transforming object coordinates to image coordinates. To address this issue, the Best Scanline Search/Determination (BSS/BSD) field focuses on obtaining the Exterior Orientation Parameters (EOPs) of each individual scanline. Current solutions are often impractical for real-time tasks due to their high time requirements and complexities. This is because they are based on the Collinearity Equation (CE) in an iterative procedure for each ground point. This study aims to develop a novel BSD framework that does not need repetitive usage of the CE with a lower computational complexity. The Linear Regression Model (LRM) forms the basis of the proposed BSD approach and uses Simulated Control Points (SCOPs) and Simulated Check Points (SCPs). The proposed method is comprised of two main steps: the training phase and the test phase. The SCOPs are used to calculate the unknown parameters of the LR model during the training phase. Then, the SCPs are used to evaluate the accuracy and execution time of the method through the test phase. The evaluation of the proposed method was conducted using ten various pushbroom images, 5 million SCPs, and a limited number of SCOPs. The Root Mean Square Error (RMSE) was found to be in the order of ten to the power of negative nine (pixel), indicating very high accuracy. Furthermore, the proposed approach is more robust than the previous well-known BSS/BSD methods when handling various pushbroom images, making it suitable for practical and real-time applications due to its high speed, which only requires 2–3 s of time. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 61523 KiB  
Article
Aerial Hybrid Adjustment of LiDAR Point Clouds, Frame Images, and Linear Pushbroom Images
by Vetle O. Jonassen, Narve S. Kjørsvik, Leif Erik Blankenberg and Jon Glenn Omholt Gjevestad
Remote Sens. 2024, 16(17), 3179; https://doi.org/10.3390/rs16173179 - 28 Aug 2024
Viewed by 330
Abstract
In airborne surveying, light detection and ranging (LiDAR) strip adjustment and image bundle adjustment are customarily performed as separate processes. The bundle adjustment is usually conducted from frame images, while using linear pushbroom (LP) images in the bundle adjustment has been historically challenging [...] Read more.
In airborne surveying, light detection and ranging (LiDAR) strip adjustment and image bundle adjustment are customarily performed as separate processes. The bundle adjustment is usually conducted from frame images, while using linear pushbroom (LP) images in the bundle adjustment has been historically challenging due to the limited number of observations available to estimate the exterior image orientations. However, data from these three sensors conceptually provide information to estimate the same trajectory corrections, which is favorable for solving the problems of image depth estimation or the planimetric correction of LiDAR point clouds. Thus, our purpose with the presented study is to jointly estimate corrections to the trajectory and interior sensor states in a scalable hybrid adjustment between 3D LiDAR point clouds, 2D frame images, and 1D LP images. Trajectory preprocessing is performed before the low-frequency corrections are estimated for certain time steps in the following adjustment using cubic spline interpolation. Furthermore, the voxelization of the LiDAR data is used to robustly and efficiently form LiDAR observations and hybrid observations between the image tie-points and the LiDAR point cloud to be used in the adjustment. The method is successfully demonstrated with an experiment, showing the joint adjustment of data from the three different sensors using the same trajectory correction model with spline interpolation of the trajectory corrections. The results show that the choice of the trajectory segmentation time step is not critical. Furthermore, photogrammetric sub-pixel planimetric accuracy is achieved, and height accuracy on the order of mm is achieved for the LiDAR point cloud. This is the first time these three types of sensors with fundamentally different acquisition techniques have been integrated. The suggested methodology presents a joint adjustment of all sensor observations and lays the foundation for including additional sensors for kinematic mapping in the future. Full article
(This article belongs to the Topic Multi-Sensor Integrated Navigation Systems)
Show Figures

Figure 1

15 pages, 24979 KiB  
Article
Material Inspection of Historical Built Heritage with Multi-Band Images: A Case Study of the Serranos Towers in Valencia
by Maria Alicandro, Camilla Mileto and José Luis Lerma
Remote Sens. 2024, 16(17), 3167; https://doi.org/10.3390/rs16173167 - 27 Aug 2024
Viewed by 349
Abstract
Built heritage materials assessment is an important task for planning and managing future conservation works. The uniqueness of each historical building makes reconnaissance operations more complex and specific for every single building. In the past, visual inspection and invasive techniques were widely used [...] Read more.
Built heritage materials assessment is an important task for planning and managing future conservation works. The uniqueness of each historical building makes reconnaissance operations more complex and specific for every single building. In the past, visual inspection and invasive techniques were widely used to investigate surface materials. Non-destructive techniques (NDTs) such as multi-band photogrammetry and remote sensing can help to assess the buildings without any contact with the investigated objects, restricting the disruptive tests on limited areas and reducing the testing time and costs of the surveys. This paper presents the results obtained using multi-band images acquired with a low-cost imaging solution after interchanging several filters, and the application of the principal components analysis (PCA) to recognize different materials of a significant historical monument. The Serranos Towers, built between 1392 and 1398, suffered several interventions in the past that affected their state of conservation with the replacement of different materials. The results of the study show the usefulness of applying PCA to distinguish different surface materials, often similar to the original ones, in a fast and efficient way to investigate and analyze our heritage legacy. Full article
(This article belongs to the Special Issue Application of Remote Sensing in Cultural Heritage Research II)
Show Figures

Figure 1

Back to TopTop