Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (542)

Search Parameters:
Keywords = programmed death protein 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3484 KiB  
Article
Peptide Blockers of PD-1-PD-L1 Interaction Reinvigorate PD-1-Suppressed T Cells and Curb Tumor Growth in Mice
by Shanshan (Jenny) Zhong, Xiaoling Liu, Tomonori Kaneko, Yan Feng, Owen Hovey, Kyle Yang, Sally Ezra, Soon-Duck Ha, Sung Kim, John K. McCormick, Huadong Liu and Shawn Shun-Cheng Li
Cells 2024, 13(14), 1193; https://doi.org/10.3390/cells13141193 - 15 Jul 2024
Viewed by 367
Abstract
The programmed cell death protein 1 (PD-1) plays a critical role in cancer immune evasion. Blocking the PD-1-PD-L1 interaction by monoclonal antibodies has shown remarkable clinical efficacy in treating certain types of cancer. However, antibodies are costly to produce, and antibody-based therapies can [...] Read more.
The programmed cell death protein 1 (PD-1) plays a critical role in cancer immune evasion. Blocking the PD-1-PD-L1 interaction by monoclonal antibodies has shown remarkable clinical efficacy in treating certain types of cancer. However, antibodies are costly to produce, and antibody-based therapies can cause immune-related adverse events. To address the limitations associated with current PD-1/PD-L1 blockade immunotherapy, we aimed to develop peptide-based inhibitors of the PD-1/PD-L1 interaction as an alternative means to PD-1/PD-L1 blockade antibodies for anti-cancer immunotherapy. Through the functional screening of peptide arrays encompassing the ectodomains of PD-1 and PD-L1, followed by the optimization of the hit peptides for solubility and stability, we have identified a 16-mer peptide, named mL7N, with a remarkable efficacy in blocking the PD-1/PD-L1 interaction both in vitro and in vivo. The mL7N peptide effectively rejuvenated PD-1-suppressed T cells in multiple cellular systems designed to recapitulate the PD-1/PD-L1 interaction in the context of T-cell receptor signaling. Furthermore, PA-mL7N, a chimera of the mL7N peptide coupled to albumin-binding palmitic acid (PA), significantly promoted breast cancer cell killing by peripheral blood mononuclear cells ex vivo and significantly curbed tumor growth in a syngeneic mouse model of breast cancer. Our work raises the prospect that mL7N may serve as a prototype for the development of a new line of peptide-based immunomodulators targeting the PD-1/PD-L1 immune checkpoint with potential applications in cancer treatment. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

22 pages, 2749 KiB  
Review
Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus
by Nefertari Sagrero-Fabela, Ramón Chávez-Mireles, Diana Celeste Salazar-Camarena and Claudia Azucena Palafox-Sánchez
Int. J. Mol. Sci. 2024, 25(14), 7726; https://doi.org/10.3390/ijms25147726 - 15 Jul 2024
Viewed by 315
Abstract
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease’s development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during [...] Read more.
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease’s development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE. Full article
(This article belongs to the Special Issue Molecular Advances in Systemic Lupus Erythematosus)
Show Figures

Figure 1

18 pages, 4068 KiB  
Article
Type I Interferon Activates PD-1 Expression through Activation of the STAT1-IRF2 Pathway in Myeloid Cells
by Liyan Liang, Yingcui Yang, Kaidi Deng, Yanmin Wu, Yan Li, Liya Bai, Yinsong Wang and Chunwan Lu
Cells 2024, 13(13), 1163; https://doi.org/10.3390/cells13131163 - 8 Jul 2024
Viewed by 471
Abstract
PD-1 (Programmed cell death protein 1) regulates the metabolic reprogramming of myeloid-derived suppressor cells and myeloid cell differentiation, as well as the type I interferon (IFN-I) signaling pathway in myeloid cells in the tumor microenvironment. PD-1, therefore, is a key inhibitory receptor in [...] Read more.
PD-1 (Programmed cell death protein 1) regulates the metabolic reprogramming of myeloid-derived suppressor cells and myeloid cell differentiation, as well as the type I interferon (IFN-I) signaling pathway in myeloid cells in the tumor microenvironment. PD-1, therefore, is a key inhibitory receptor in myeloid cells. However, the regulation of PD-1 expression in myeloid cells is unknown. We report that the expression level of PDCD1, the gene that encodes the PD-1 protein, is positively correlated with the levels of IFNB1 and IFNAR1 in myeloid cells in human colorectal cancer. Treatment of mouse myeloid cell lines with recombinant IFNβ protein elevated PD-1 expression in myeloid cells in vitro. Knocking out IFNAR1, the gene that encodes the IFN-I-specific receptor, diminished the inductive effect of IFNβ on PD-1 expression in myeloid cells in vitro. Treatment of tumor-bearing mice with a lipid nanoparticle-encapsulated IFNβ-encoding plasmid (IFNBCOL01) increased IFNβ expression, resulting in elevated PD-1 expression in tumor-infiltrating myeloid cells. At the molecular level, we determined that IFNβ activates STAT1 (signal transducer and activator of transcription 1) and IRFs (interferon regulatory factors) in myeloid cells. Analysis of the cd279 promoter identified IRF2-binding consensus sequence elements. ChIP (chromatin immunoprecipitation) analysis determined that the pSTAT1 directly binds to the irf2 promoter and that IRF2 directly binds to the cd279 promoter in myeloid cells in vitro and in vivo. In colon cancer patients, the expression levels of STAT1, IRF2 and PDCD1 are positively correlated in tumor-infiltrating myeloid cells. Our findings determine that IFNβ activates PD-1 expression at least in part by an autocrine mechanism via the stimulation of the pSTAT1-IRF2 axis in myeloid cells. Full article
Show Figures

Figure 1

11 pages, 2328 KiB  
Article
Modulating Tumor Immunity by Targeting Tumor Fibrotic Stroma and Angiogenic Vessels for Lung Cancer Treatment
by Yi Yuan, Falguni Mishra, Bin Li, Guangda Peng, Payton Chan, Jenny Yang and Zhiren Liu
Cancers 2024, 16(13), 2483; https://doi.org/10.3390/cancers16132483 - 8 Jul 2024
Viewed by 481
Abstract
Fibrotic stroma and angiogenic tumor vessels play an important role in modulating tumor immunity. We previously reported a rationally designed protein (ProAgio) that targets integrin αvβ3 at a novel site. ProAgio induces the apoptosis of cells that express high levels [...] Read more.
Fibrotic stroma and angiogenic tumor vessels play an important role in modulating tumor immunity. We previously reported a rationally designed protein (ProAgio) that targets integrin αvβ3 at a novel site. ProAgio induces the apoptosis of cells that express high levels of the integrin. Both activated cancer-associated fibroblasts (CAFs) and angiogenic endothelial cells (aECs) in tumors express high levels of integrin αvβ3. ProAgio simultaneously and specifically induces apoptosis in CAFs and aECs in tumors. We provide evidence here that the depletion of CAFs and the elimination of leaky tumor angiogenic vessels by ProAgio alter tumor immunity. ProAgio reduces CD4+ Treg and Myeloid-derived suppressor cells (MDSCs), increases CD8+ T-cells, and increases the M1/M2 macrophage ratio in the tumor. The depletion of dense fibrotic stroma (CAFs) by ProAgio decreases the Programmed Death Ligand 1 (PDL-1) levels in the stroma areas surrounding the tumors, and thus strongly increases the delivery of anti-PDL-1 antibody to the target cancer cells. The impact of ProAgio on tumor immunity provides strong synergistical effects of checkpoint inhibitors on lung cancer treatment. Full article
(This article belongs to the Special Issue Immunosuppression and Protective Immunity in Tumor Microenvironment)
Show Figures

Figure 1

17 pages, 3148 KiB  
Case Report
A New Histology-Based Prognostic Index for Aggressive T-Cell lymphoma: Preliminary Results of the “TCL Urayasu Classification”
by Hideaki Nitta, Haruko Takizawa, Toru Mitsumori, Hiroko Iizuka-Honma, Tomonori Ochiai, Chiho Furuya, Yoshihiko Araki, Maki Fujishiro, Shigeki Tomita, Akane Hashizume, Tomohiro Sawada, Kazunori Miyake, Mitsuo Okubo, Yasunobu Sekiguchi, Miki Ando and Masaaki Noguchi
J. Clin. Med. 2024, 13(13), 3870; https://doi.org/10.3390/jcm13133870 - 30 Jun 2024
Viewed by 323
Abstract
Background: Aggressive mature T-cell lymphoma (TCL) is a disease that carries a poor prognosis. Methods: We analyzed the expression of 22 tumor cell functional proteins in 16 randomly selected patients with TCL. Immunohistochemistry was performed in paraffin-embedded tumor tissue sections to determine the [...] Read more.
Background: Aggressive mature T-cell lymphoma (TCL) is a disease that carries a poor prognosis. Methods: We analyzed the expression of 22 tumor cell functional proteins in 16 randomly selected patients with TCL. Immunohistochemistry was performed in paraffin-embedded tumor tissue sections to determine the protein expression statuses in tumor cells. Results: Glucose-regulated protein 94 (GRP94), a protein that serves as a pro-survival component under endoplasmic reticulum (ER) stress in the tumor microenvironment, was significantly associated with a shortened survival. Furthermore, significant differences were observed when GRP94 was combined with six other factors. The six factors were (1) programmed cell death-ligand 1 (PD-L1); (2) programmed cell death 1 (PD-1); (3) aldo-keto reductase family 1 member C3 (AKR1C3); (4) P53, a tumor suppressor; (5) glucose-regulated protein 78 (GRP78), an ER stress protein; and (6) thymidine phosphorylase (TP). Based on the combination of GRP94 and the six other factors expressed in the tumors, we propose a new prognostic classification system for TCL (TCL Urayasu classification). Group 1 (relatively good prognosis): GRP94-negative (n = 6; median OS, 88 months; p < 0.01); Group 2 (poor prognosis): GRP94-positive, plus expression of two of the six factors mentioned above (n = 5; median OS, 25 months; p > 0.05); and Group 3 (very poor prognosis): GRP94-positive, plus expression of at least three of the six factors mentioned above (n = 5; median OS, 10 months; p < 0.01). Conclusions: Thus, the TCL Urayasu prognostic classification may be a simple, useful, and innovative classification that also explains the mechanism of resistance to treatment for each functional protein. If validated in a larger number of patients, the TCL Urayasu classification will enable a targeted treatment using selected inhibitors acting on the abnormal protein found in each patient. Full article
(This article belongs to the Special Issue Hematologic Malignancies: Treatment Strategies and Future Challenges)
Show Figures

Figure 1

16 pages, 1224 KiB  
Article
Isolation and Total Synthesis of PM170453, a New Cyclic Depsipeptide Isolated from Lyngbya sp.
by Rogelio Fernández, Marta Pérez, Alejandro Losada, Silvia Reboredo, Asier Gómez-San Juan, María Jesús Martín, Andrés Francesch, Simon Munt and Carmen Cuevas
Mar. Drugs 2024, 22(7), 303; https://doi.org/10.3390/md22070303 - 28 Jun 2024
Viewed by 782
Abstract
In our continuing search for biologically active new chemical entities from marine organisms, we have isolated a new cyclic depsipeptide, PM170453 (1), from a cyanobacterium of the genus Lyngbya sp., collected in the Indo-Pacific Ocean. Structure elucidation of the isolated compound [...] Read more.
In our continuing search for biologically active new chemical entities from marine organisms, we have isolated a new cyclic depsipeptide, PM170453 (1), from a cyanobacterium of the genus Lyngbya sp., collected in the Indo-Pacific Ocean. Structure elucidation of the isolated compound was determined by spectroscopic methods including MS, 1H, 13C and 2D-NMR. To solve the supply problem for 1 and progress pharmaceutical development, the total synthesis of 1 that involves a total of 20 chemical steps in a convergent process was carried out. Its in vitro cytotoxic activity against four human tumor cell lines, as well as the inhibition of the interaction between the programmed cell death protein 1 PD-1 and its ligand PD-L1 were also evaluated. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Figure 1

0 pages, 6372 KiB  
Article
An Immunochromatographic Test Strip for Rapid Quantitative Control of Monoclonal Antibodies against Programmed Cell Death Protein 1
by Jingyi Zhang, Congmei Lin, Feng Li, Xinhao Wei, Yusen Chen, Yanyong Fu, Xiaoping Yu, Biao Zhang and Zihong Ye
Molecules 2024, 29(13), 3046; https://doi.org/10.3390/molecules29133046 - 27 Jun 2024
Viewed by 362
Abstract
Cancer is one of the major public health challenges in the world, which is characterized by rapid progression and high mortality. Immunotherapy, represented by PD-1 monoclonal antibody, has significantly improved the efficacy of malignant tumors and has become one of the most popular [...] Read more.
Cancer is one of the major public health challenges in the world, which is characterized by rapid progression and high mortality. Immunotherapy, represented by PD-1 monoclonal antibody, has significantly improved the efficacy of malignant tumors and has become one of the most popular immunotherapy methods at present. Therefore, there is an increasing demand for novel detection methods for PD-1 monoclonal antibodies. The aim of this work was to establish a rapid, simple, and sensitive immunochromatographic test strip (ICTS) based on the AuNPs enlargement for both visual and instrumental detection of the PD-1 monoclonal antibody concentration. The mixed solution of NH2OH·HCl and HAuCl4 was used as an enhancement solution to lower the detection limit and achieve higher sensitivity. A test strip reader was used to construct a visualized quantitative detection standard curve for the PD-1 monoclonal antibody concentration. The LOD was 1.58 ng/mL through a triple signal-to-noise ratio. The detection time was within 10 min. The constructed test strips can rapidly, accurately, and efficiently detect the concentration of PD-1 monoclonal antibody in real samples. Full article
Show Figures

Figure 1

21 pages, 1809 KiB  
Review
Evolving Precision First-Line Systemic Treatment for Patients with Unresectable Non-Small Cell Lung Cancer
by Tianhong Li, Weijie Ma and Ebaa Al-Obeidi
Cancers 2024, 16(13), 2350; https://doi.org/10.3390/cancers16132350 - 26 Jun 2024
Viewed by 1184
Abstract
First-line systemic therapy for patients with advanced or metastatic non-small cell lung cancer (NSCLC) has rapidly evolved over the past two decades. First, molecularly targeted therapy for a growing number of gain-of-function molecular targets has been shown to improve progression-free survival (PFS) and [...] Read more.
First-line systemic therapy for patients with advanced or metastatic non-small cell lung cancer (NSCLC) has rapidly evolved over the past two decades. First, molecularly targeted therapy for a growing number of gain-of-function molecular targets has been shown to improve progression-free survival (PFS) and overall survival (OS) with favorable toxicity profiles compared to platinum-containing chemotherapy and can be given as first-line systemic therapy in ~25% of patients with NSCLC. Actionable genetic alterations include EGFR, BRAF V600E, and MET exon 14 splicing site-sensitizing mutations, as well as ALK-, ROS1-, RET-, and NTRK-gene fusions. Secondly, inhibitors of programmed cell death protein 1 or its ligand 1 (PD-1/L1) such as pembrolizumab, atezolizumab, or cemiplimab monotherapy have become a standard of care for ~25% of patients with NSCLC whose tumors have high PD-L1 expression (total proportion score (TPS) ≥50%) and no sensitizing EGFR/ALK alterations. Lastly, for the remaining ~50% of patients who are fit and whose tumors have no or low PD-L1 expression (TPS of 0–49%) and no sensitizing EGFR/ALK aberrations, platinum-containing chemotherapy with the addition of a PD-1/L1 inhibitor alone or in combination of a cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitor improves PFS and OS compared to chemotherapy alone. The objectives of this review are to summarize the current data and perspectives on first-line systemic treatment in patients with unresectable NSCLC and propose a practical algorithm for implementing precision biomarker testing at diagnosis. Full article
Show Figures

Figure 1

14 pages, 1366 KiB  
Review
Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer–Narrative Review
by Agata Poniewierska-Baran, Karolina Sobolak, Paulina Niedźwiedzka-Rystwej, Paulina Plewa and Andrzej Pawlik
Int. J. Mol. Sci. 2024, 25(12), 6471; https://doi.org/10.3390/ijms25126471 - 12 Jun 2024
Viewed by 674
Abstract
Due to its rapid progression to advanced stages and highly metastatic properties, gastric cancer (GC) is one of the most aggressive malignancies and the fourth leading cause of cancer-related deaths worldwide. The metastatic process includes local invasion, metastasis initiation, migration with colonisation at [...] Read more.
Due to its rapid progression to advanced stages and highly metastatic properties, gastric cancer (GC) is one of the most aggressive malignancies and the fourth leading cause of cancer-related deaths worldwide. The metastatic process includes local invasion, metastasis initiation, migration with colonisation at distant sites, and evasion of the immune response. Tumour growth involves the activation of inhibitory signals associated with the immune response, also known as immune checkpoints, including PD-1/PD-L1 (programmed death 1/programmed death ligand 1), CTLA-4 (cytotoxic T cell antigen 4), TIGIT (T cell immunoreceptor with Ig and ITIM domains), and others. Immune checkpoint molecules (ICPMs) are proteins that modulate the innate and adaptive immune responses. While their expression is prominent on immune cells, mainly antigen-presenting cells (APC) and other types of cells, they are also expressed on tumour cells. The engagement of the receptor by the ligand is crucial for inhibiting or stimulating the immune cell, which is an extremely important aspect of cancer immunotherapy. This narrative review explores immunotherapy, focusing on ICPMs and immune checkpoint inhibitors in GC. We also summarise the current clinical trials that are evaluating ICPMs as a target for GC treatment. Full article
(This article belongs to the Special Issue Epigenetic Genes, Biomarkers and Immunotherapy in Cancers)
Show Figures

Figure 1

18 pages, 5882 KiB  
Article
The Immune Checkpoint Protein PD-L1 Regulates Ciliogenesis and Hedgehog Signaling
by Ewud Agborbesong and Xiaogang Li
Cells 2024, 13(12), 1003; https://doi.org/10.3390/cells13121003 - 8 Jun 2024
Viewed by 745
Abstract
The primary cilium, an antenna-like sensory organelle that protrudes from the surface of most eukaryotic cell types, has become a signaling hub of growing interest given that defects in its structure and/or function are associated with human diseases and syndromes, known as ciliopathies. [...] Read more.
The primary cilium, an antenna-like sensory organelle that protrudes from the surface of most eukaryotic cell types, has become a signaling hub of growing interest given that defects in its structure and/or function are associated with human diseases and syndromes, known as ciliopathies. With the continuously expanding role of primary cilia in health and diseases, identifying new players in ciliogenesis will lead to a better understanding of the function of this organelle. It has been shown that the primary cilium shares similarities with the immune synapse, a highly organized structure at the interface between an antigen-presenting or target cell and a lymphocyte. Studies have demonstrated a role for known cilia regulators in immune synapse formation. However, whether immune synapse regulators modulate ciliogenesis remains elusive. Here, we find that programmed death ligand 1 (PD-L1), an immune checkpoint protein and regulator of immune synapse formation, plays a role in the regulation of ciliogenesis. We found that PD-L1 is enriched at the centrosome/basal body and Golgi apparatus of ciliated cells and depleting PD-L1 enhanced ciliogenesis and increased the accumulation of ciliary membrane trafficking proteins Rab8a, BBS5, and sensory receptor protein PC-2. Moreover, PD-L1 formed a complex with BBS5 and PC-2. In addition, we found that depletion of PD-L1 resulted in the ciliary accumulation of Gli3 and the downregulation of Gli1. Our results suggest that PD-L1 is a new player in ciliogenesis, contributing to PC-2-mediated sensory signaling and the Hh signaling cascade. Full article
Show Figures

Figure 1

16 pages, 1244 KiB  
Article
A Cross-Sectional Exploratory Study of Cardiovascular Risk Biomarkers in Non-Obese Women with and without Polycystic Ovary Syndrome: Association with Vitamin D
by Manjula Nandakumar, Priya Das, Thozhukat Sathyapalan, Alexandra E. Butler and Stephen L. Atkin
Int. J. Mol. Sci. 2024, 25(12), 6330; https://doi.org/10.3390/ijms25126330 - 7 Jun 2024
Viewed by 1108
Abstract
Vitamin D is proposed to have a protective effect against cardiovascular disease, though the mechanism is unclear. Vitamin D deficiency is common in polycystic ovary syndrome (PCOS), where it is strongly related to obesity, insulin resistance (IR) and risk of cardiovascular disease. To [...] Read more.
Vitamin D is proposed to have a protective effect against cardiovascular disease, though the mechanism is unclear. Vitamin D deficiency is common in polycystic ovary syndrome (PCOS), where it is strongly related to obesity, insulin resistance (IR) and risk of cardiovascular disease. To determine if the inherent pathophysiology of PCOS or vitamin D levels are linked to dysregulation of cardiovascular risk proteins (CVRPs), a study in non-obese women with PCOS and without IR was undertaken. Our hypothesis was that the levels of vitamin D3 and its active metabolite would be associated with CVRPs comparably in women with and without PCOS. In women with PCOS (n = 29) and controls (n = 29), 54 CVRPs were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement and correlated to 25-hydroxyvitamin D3 (25(OH)D3) and the active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) measured by gold standard isotope-dilution liquid chromatography tandem mass spectrometry. Women with PCOS had comparable IR and systemic inflammation (normal C-reactive protein) to control women, though had higher free androgen index and anti-Mullerian hormone levels. 25(OH)D3 and 1,25(OH)2D3 levels did not differ between groups. Nine CVRPs were higher in PCOS (p < 0.05) (Galectin-9, Brother of CDO, C-motif chemokine 3, Interleukin-18 receptor-1, Thrombopoietin, Interleukin-1 receptor antagonist protein, Programmed cell death 1 ligand-2, Low-affinity immunoglobulin gamma Fc-region receptor II-b and human growth hormone), whilst 45 CVRPs did not differ. 25(OH)D3 correlated with five CVRPs in PCOS and one in controls (p < 0.05). Despite the women with PCOS not exhibiting overt systemic inflammation, 9 of 54 CVRPs were elevated, all relating to inflammation, and 5 of these correlated with 25(OH)D3, suggesting an ongoing underlying inflammatory process in PCOS even in the absence of obesity/IR. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

14 pages, 2126 KiB  
Article
Evaluation of Immune Exhaustion and Co-Inhibitory Receptor Expression in Mycobacterium avium Subspecies paratuberculosis (MAP) Seropositive Diarrhoeic Bovines
by Shalini Sharma, Khushbu Sharma, Ram Kumar, Deen Dayal, Shweta Dhanda, Naveen Kumar, Kundan Kumar Chaubey, Shoor Vir Singh, Sikander Banger and Vishal Sharma
Pathogens 2024, 13(6), 473; https://doi.org/10.3390/pathogens13060473 - 4 Jun 2024
Viewed by 503
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) infection leads to chronic, persistent granulomatous enteritis, causing prolonged diarrhoea and emaciation. The disease is managed using medications such as antibiotics, live vaccines, mycobacteriophage therapies and other treatments; however, a notable proportion of affected animals do not show [...] Read more.
Mycobacterium avium subspecies paratuberculosis (MAP) infection leads to chronic, persistent granulomatous enteritis, causing prolonged diarrhoea and emaciation. The disease is managed using medications such as antibiotics, live vaccines, mycobacteriophage therapies and other treatments; however, a notable proportion of affected animals do not show improvement with this approach. We hypothesise that immunoinhibitory receptors TIM-3 (T cell immunoglobulin mucin protein-3) and PD-1 (Programmed death receptor 1) may be upregulated on Peripheral blood mononuclear cells (PBMCs) of MAP-seropositive bovines, potentially contributing to immune exhaustion. Samples (blood and faeces) were collected from 32 diarrhoeic bovines suspected of MAP infection; eight apparently healthy buffaloes from the dairy farm at Hisar, Haryana and from 14 cows (suffering from chronic diarrhoea, weakness and emaciation) housed in stray cattle shed. MAP infection was estimated using indigenous ELISA (i-ELISA), faecal IS900 PCR, culture and acid-fast staining. TIM-3 and PD-1 gene expression on PBMCs were determined using qRT-PCR. TIM3 expression was relatively higher (~400-fold, 330-fold, 112-fold, 65-fold and 16-fold) in 5 chronically diarrhoeic PBMCs samples (MAP-seropositive), and higher PD-1 expression (around ~7-fold, 1.75-fold, 2.5-fold, 7.6-fold) was recorded in 4 diarrhoeic MAP-seropositive animals, compared to apparently healthy and other MAP-seronegative diarrhoeic animals. High co-expression of TIM-3 and PD-1 levels was also recorded in chronically diarrhoeic, emaciated stray cattle. Understanding immune responses in field conditions might aid in the therapeutic management of paratuberculosis. Full article
(This article belongs to the Special Issue T Cell Responses to Pathogenic Infections)
Show Figures

Figure 1

25 pages, 8431 KiB  
Article
C2-Symmetrical Terphenyl Derivatives as Small Molecule Inhibitors of Programmed Cell Death 1/Programmed Death Ligand 1 Protein–Protein Interaction
by Joanna Klimek, Oskar Kruc, Joanna Ceklarz, Beata Kamińska, Bogdan Musielak, Robin van der Straat, Alexander Dӧmling, Tad A. Holak, Damian Muszak, Justyna Kalinowska-Tłuścik, Łukasz Skalniak and Ewa Surmiak
Molecules 2024, 29(11), 2646; https://doi.org/10.3390/molecules29112646 - 4 Jun 2024
Viewed by 592
Abstract
The PD-1/PD-L1 complex is an immune checkpoint responsible for regulating the natural immune response, but also allows tumors to escape immune surveillance. Inhibition of the PD-1/PD-L1 axis positively contributes to the efficacy of cancer treatment. The only available therapeutics targeting PD-1/PD-L1 are monoclonal [...] Read more.
The PD-1/PD-L1 complex is an immune checkpoint responsible for regulating the natural immune response, but also allows tumors to escape immune surveillance. Inhibition of the PD-1/PD-L1 axis positively contributes to the efficacy of cancer treatment. The only available therapeutics targeting PD-1/PD-L1 are monoclonal antibody-based drugs, which have several limitations. Therefore, small molecule compounds are emerging as an attractive alternative that can potentially overcome the drawbacks of mAb-based therapy. In this article, we present a novel class of small molecule compounds based on the terphenyl scaffold that bind to PD-L1. The general architecture of the presented structures is characterized by axial symmetry and consists of three elements: an m-terphenyl core, an additional aromatic ring, and a solubilizing agent. Using molecular docking, we designed a series of final compounds, which were subsequently synthesized and tested in HTRF assay and NMR binding assay to evaluate their activity. In addition, we performed an in-depth analysis of the mutual arrangement of the phenyl rings of the terphenyl core within the binding pocket of PD-L1 and found several correlations between the plane angle values and the affinity of the compounds towards the protein. Full article
Show Figures

Figure 1

11 pages, 984 KiB  
Article
Lung Clearance Index as a Screening Parameter of Pulmonary Impairment in Patients under Immune Checkpoint Therapy: A Pilot Study
by Maya-Leonie C. Steinbach, Jakob Eska, Julia Weitzel, Alexandra R. Görges, Julia K. Tietze and Manfred Ballmann
Cancers 2024, 16(11), 2088; https://doi.org/10.3390/cancers16112088 - 30 May 2024
Viewed by 520
Abstract
Background: Immune checkpoint blockade (ICB) has presented a breakthrough in the treatment of malignant tumors and increased the overall survival of patients with various tumor entities. ICB may also cause immune-related adverse events, such as pneumonitis or interstitial lung disease. The lung clearance [...] Read more.
Background: Immune checkpoint blockade (ICB) has presented a breakthrough in the treatment of malignant tumors and increased the overall survival of patients with various tumor entities. ICB may also cause immune-related adverse events, such as pneumonitis or interstitial lung disease. The lung clearance index (LCI) is a multiple-breath washout technique offering information on lung pathology in addition to conventional spirometry. It measures the degree of pulmonary ventilation inhomogeneity and allows early detection of pulmonary damage, especially that to peripheral airways. Methods: This cross-sectional study compared the lung function of patients with melanoma or metastatic cutaneous squamous cell carcinoma who received programmed cell death 1 (PD-1) and cytotoxic T-Lymphocyte-associated Protein 4 (CTLA-4) antibodies, alone or in combination, to age- and sex-matched controls. Lung function was assessed using spirometry, according to American Thoracic Society and European Respiratory Society standards, the LCI, and a diffusion capacity of carbon monoxide (DLCO) measurement. Results: Sixty-one screened patients and thirty-eight screened controls led to nineteen successfully included pairs. The LCI in the ICB-treated patients was 8.41 ± 1.15 (mean ± SD), which was 0.32 higher compared to 8.07 ± 1.17 in the control group, but the difference was not significant (p = 0.452). The patients receiving their ICB therapy for under five months showed a significantly lower LCI (7.98 ± 0.77) compared to the ICB patients undergoing therapy for over five months (9.63 ± 1.22) at the point of testing (p = 0.014). Spirometric analysis revealed that the forced expiratory volume between 25 and 75% of the forced vital capacity (FEF25–75%) in the ICB-treated patients was significantly reduced (p = 0.047) compared to the control group. DLCO (%predicted and adjusted for hemoglobin) was 94.4 ± 19.7 in the ICB patients and 93.4 ± 21.7 in the control group (p = 0.734). Conclusions: The patients undergoing ICB therapy showed slightly impaired lung function compared to the controls. Longer periods of ICB treatment led to deterioration of the LCI, which may be a sign of a subclinical inflammatory process. The LCI is feasible and may be easily integrated into the clinical daily routine and could contribute to early detection of pulmonary (auto-)inflammation. Full article
Show Figures

Figure 1

20 pages, 2892 KiB  
Article
Immune and Microbial Signatures Associated with PD-1 Blockade Sensitivity in a Preclinical Model for HPV+ Oropharyngeal Cancer
by Jennifer Díaz-Rivera, Michael A. Rodríguez-Rivera, Natalie M. Meléndez-Vázquez, Filipa Godoy-Vitorino and Stephanie M. Dorta-Estremera
Cancers 2024, 16(11), 2065; https://doi.org/10.3390/cancers16112065 - 30 May 2024
Viewed by 830
Abstract
The United States is suffering from an epidemic associated with high-risk strains of the Human Papillomavirus (HPV) predominantly responsible for the development of head and neck squamous cell carcinoma (HNSCC). Treatment with immune checkpoint inhibitors targeting programmed death 1 (PD-1) or its ligand [...] Read more.
The United States is suffering from an epidemic associated with high-risk strains of the Human Papillomavirus (HPV) predominantly responsible for the development of head and neck squamous cell carcinoma (HNSCC). Treatment with immune checkpoint inhibitors targeting programmed death 1 (PD-1) or its ligand PD-L1 has shown poor efficacy in HNSCC patients, observing only a 20–30% response. Therefore, biological marker identification associated with PD-1 blockade response is important to improve prognosis and define novel therapeutics for HNSCC patients. Therapy response was associated with increased frequencies of activated CD27+T cells, activated CD79a+ B cells, antigen-presenting CD74+ dendritic and B cells, and PD-L1+ and PD-L2+ myeloid-derived suppressor cells (MDSCs). The oral microbiota composition differed significantly in mice bearing tongue tumors and treated with anti-PD-1. A higher abundance of Allobaculum, Blautia, Faecalibacterium, Dorea, or Roseburia was associated with response to the therapy. However, an increase in Enterococcus was attributed to tongue tumor-bearing non-responding mice. Our findings indicate that differences in immune phenotypes, protein expression, and bacterial abundance occur as mice develop tongue tumors and are treated with anti-PD-1. These results may have a clinical impact as specific bacteria and immune phenotype could serve as biomarkers for treatment response in HNSCC. Full article
Show Figures

Figure 1

Back to TopTop