Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = quantum Carnot engine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1669 KiB  
Article
Applying the Action Principle of Classical Mechanics to the Thermodynamics of the Troposphere
by Ivan R. Kennedy and Migdat Hodzic
Appl. Mech. 2023, 4(2), 729-751; https://doi.org/10.3390/applmech4020037 - 5 Jun 2023
Viewed by 2642
Abstract
Advances in applied mechanics have facilitated a better understanding of the recycling of heat and work in the troposphere. This goal is important to meet practical needs for better management of climate science. Achieving this objective may require the application of quantum principles [...] Read more.
Advances in applied mechanics have facilitated a better understanding of the recycling of heat and work in the troposphere. This goal is important to meet practical needs for better management of climate science. Achieving this objective may require the application of quantum principles in action mechanics, recently employed to analyze the reversible thermodynamics of Carnot’s heat engine cycle. The testable proposals suggested here seek to solve several problems including (i) the phenomena of decreasing temperature and molecular entropy but increasing Gibbs energy with altitude in the troposphere; (ii) a reversible system storing thermal energy to drive vortical wind flow in anticyclones while frictionally warming the Earth’s surface by heat release from turbulence; (iii) vortical generation of electrical power from translational momentum in airflow in wind farms; and (iv) vortical energy in the destructive power of tropical cyclones. The scalar property of molecular action (@t mvds, J-sec) is used to show how equilibrium temperatures are achieved from statistical equality of mechanical torques (mv2 or mr2ω2); these are exerted by Gibbs field quanta for each kind of gas phase molecule as rates of translational action (d@t/dt ≡mr2ω/dt ≡ mv2). These torques result from the impulsive density of resonant quantum or Gibbs fields with molecules, configuring the trajectories of gas molecules while balancing molecular pressure against the density of field energy (J/m3). Gibbs energy fields contain no resonant quanta at zero Kelvin, with this chemical potential diminishing in magnitude as the translational action of vapor molecules and quantum field energy content increases with temperature. These cases distinguish symmetrically between causal fields of impulsive quanta (Σhν) that energize the action of matter and the resultant kinetic torques of molecular mechanics (mv2). The quanta of these different fields display mean wavelengths from 10−4 m to 1012 m, with radial mechanical advantages many orders of magnitude greater than the corresponding translational actions, though with mean quantum frequencies (v) similar to those of radial Brownian movement for independent particles (ω). Widespread neglect of the Gibbs field energy component of natural systems may be preventing advances in tropospheric mechanics. A better understanding of these vortical Gibbs energy fields as thermodynamically reversible reservoirs for heat can help optimize work processes on Earth, delaying the achievement of maximum entropy production from short-wave solar radiation being converted to outgoing long-wave radiation to space. This understanding may improve strategies for management of global changes in climate. Full article
(This article belongs to the Special Issue Applied Thermodynamics: Modern Developments (2nd Volume))
Show Figures

Figure 1

16 pages, 1226 KiB  
Article
Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential
by Yang Xiao, Kai Li, Jizhou He and Jianhui Wang
Entropy 2023, 25(3), 484; https://doi.org/10.3390/e25030484 - 10 Mar 2023
Cited by 1 | Viewed by 1364
Abstract
We present a quantum Otto engine model alternatively driven by a hot and a cold heat reservoir and consisting of two isochoric and two adiabatic strokes, where the adiabatic expansion or compression is realized by adiabatically changing the shape of the potential. Here, [...] Read more.
We present a quantum Otto engine model alternatively driven by a hot and a cold heat reservoir and consisting of two isochoric and two adiabatic strokes, where the adiabatic expansion or compression is realized by adiabatically changing the shape of the potential. Here, we show that such an adiabatic deformation may alter operation mode and enhance machine performance by increasing output work and efficiency, even with the advantage of decreasing work fluctuations. If the heat engine in the sudden limit operates under maximal power by optimizing the control parameter, the efficiency shows certain universal behavior, η*=ηC/2+ηC2/8+O(ηC3), where ηC=1βhr/βcr is the Carnot efficiency, with βhr(βcr) being the inverse temperature of the hot (cold) reservoir. However, such efficiency under maximal power can be produced by our machine model in the regimes where the machine without adiabatic deformation can only operate as a heater or a refrigerator. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

31 pages, 668 KiB  
Article
Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics
by Ramandeep S. Johal and Venu Mehta
Entropy 2021, 23(9), 1149; https://doi.org/10.3390/e23091149 - 1 Sep 2021
Cited by 9 | Viewed by 3011
Abstract
Quantum thermal machines make use of non-classical thermodynamic resources, one of which include interactions between elements of the quantum working medium. In this paper, we examine the performance of a quasi-static quantum Otto engine based on two spins of arbitrary magnitudes subject to [...] Read more.
Quantum thermal machines make use of non-classical thermodynamic resources, one of which include interactions between elements of the quantum working medium. In this paper, we examine the performance of a quasi-static quantum Otto engine based on two spins of arbitrary magnitudes subject to an external magnetic field and coupled via an isotropic Heisenberg exchange interaction. It has been shown earlier that the said interaction provides an enhancement of cycle efficiency, with an upper bound that is tighter than the Carnot efficiency. However, the necessary conditions governing engine performance and the relevant upper bound for efficiency are unknown for the general case of arbitrary spin magnitudes. By analyzing extreme case scenarios, we formulate heuristics to infer the necessary conditions for an engine with uncoupled as well as coupled spin model. These conditions lead us to a connection between performance of quantum heat engines and the notion of majorization. Furthermore, the study of complete Otto cycles inherent in the average cycle also yields interesting insights into the average performance. Full article
(This article belongs to the Special Issue Nonequilibrium Thermodynamics and Stochastic Processes)
Show Figures

Figure 1

27 pages, 2101 KiB  
Article
Action and Entropy in Heat Engines: An Action Revision of the Carnot Cycle
by Ivan R. Kennedy and Migdat Hodzic
Entropy 2021, 23(7), 860; https://doi.org/10.3390/e23070860 - 5 Jul 2021
Cited by 2 | Viewed by 2644
Abstract
Despite the remarkable success of Carnot’s heat engine cycle in founding the discipline of thermodynamics two centuries ago, false viewpoints of his use of the caloric theory in the cycle linger, limiting his legacy. An action revision of the Carnot cycle can correct [...] Read more.
Despite the remarkable success of Carnot’s heat engine cycle in founding the discipline of thermodynamics two centuries ago, false viewpoints of his use of the caloric theory in the cycle linger, limiting his legacy. An action revision of the Carnot cycle can correct this, showing that the heat flow powering external mechanical work is compensated internally with configurational changes in the thermodynamic or Gibbs potential of the working fluid, differing in each stage of the cycle quantified by Carnot as caloric. Action (@) is a property of state having the same physical dimensions as angular momentum (mrv = mr2ω). However, this property is scalar rather than vectorial, including a dimensionless phase angle (@ = mr2ωδφ). We have recently confirmed with atmospheric gases that their entropy is a logarithmic function of the relative vibrational, rotational, and translational action ratios with Planck’s quantum of action ħ. The Carnot principle shows that the maximum rate of work (puissance motrice) possible from the reversible cycle is controlled by the difference in temperature of the hot source and the cold sink: the colder the better. This temperature difference between the source and the sink also controls the isothermal variations of the Gibbs potential of the working fluid, which Carnot identified as reversible temperature-dependent but unequal caloric exchanges. Importantly, the engine’s inertia ensures that heat from work performed adiabatically in the expansion phase is all restored to the working fluid during the adiabatic recompression, less the net work performed. This allows both the energy and the thermodynamic potential to return to the same values at the beginning of each cycle, which is a point strongly emphasized by Carnot. Our action revision equates Carnot’s calorique, or the non-sensible heat later described by Clausius as ‘work-heat’, exclusively to negative Gibbs energy (−G) or quantum field energy. This action field complements the sensible energy or vis-viva heat as molecular kinetic motion, and its recognition should have significance for designing more efficient heat engines or better understanding of the heat engine powering the Earth’s climates. Full article
(This article belongs to the Special Issue Entropy: The Scientific Tool of the 21st Century)
Show Figures

Figure 1

8 pages, 232 KiB  
Communication
Can Quantum Correlations Lead to Violation of the Second Law of Thermodynamics?
by Alexey V. Melkikh
Entropy 2021, 23(5), 573; https://doi.org/10.3390/e23050573 - 7 May 2021
Cited by 3 | Viewed by 1763
Abstract
Quantum entanglement can cause the efficiency of a heat engine to be greater than the efficiency of the Carnot cycle. However, this does not mean a violation of the second law of thermodynamics, since there is no local equilibrium for pure quantum states, [...] Read more.
Quantum entanglement can cause the efficiency of a heat engine to be greater than the efficiency of the Carnot cycle. However, this does not mean a violation of the second law of thermodynamics, since there is no local equilibrium for pure quantum states, and, in the absence of local equilibrium, thermodynamics cannot be formulated correctly. Von Neumann entropy is not a thermodynamic quantity, although it can characterize the ordering of a system. In the case of the entanglement of the particles of the system with the environment, the concept of an isolated system should be refined. In any case, quantum correlations cannot lead to a violation of the second law of thermodynamics in any of its formulations. This article is devoted to a technical discussion of the expected results on the role of quantum entanglement in thermodynamics. Full article
18 pages, 5189 KiB  
Article
Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases
by Lingen Chen, Zewei Meng, Yanlin Ge and Feng Wu
Entropy 2021, 23(5), 536; https://doi.org/10.3390/e23050536 - 27 Apr 2021
Cited by 20 | Viewed by 2431
Abstract
An irreversible combined Carnot cycle model using ideal quantum gases as a working medium was studied by using finite-time thermodynamics. The combined cycle consisted of two Carnot sub-cycles in a cascade mode. Considering thermal resistance, internal irreversibility, and heat leakage losses, the power [...] Read more.
An irreversible combined Carnot cycle model using ideal quantum gases as a working medium was studied by using finite-time thermodynamics. The combined cycle consisted of two Carnot sub-cycles in a cascade mode. Considering thermal resistance, internal irreversibility, and heat leakage losses, the power output and thermal efficiency of the irreversible combined Carnot cycle were derived by utilizing the quantum gas state equation. The temperature effect of the working medium on power output and thermal efficiency is analyzed by numerical method, the optimal relationship between power output and thermal efficiency is solved by the Euler-Lagrange equation, and the effects of different working mediums on the optimal power and thermal efficiency performance are also focused. The results show that there is a set of working medium temperatures that makes the power output of the combined cycle be maximum. When there is no heat leakage loss in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are parabolic-like ones, and the internal irreversibility makes both power output and efficiency decrease. When there is heat leakage loss in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are loop-shaped ones, and the heat leakage loss only affects the thermal efficiency of the combined Carnot cycle. Comparing the power output of combined heat engines with four types of working mediums, the two-stage combined Carnot cycle using ideal Fermi-Bose gas as working medium obtains the highest power output. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

10 pages, 1361 KiB  
Article
What Is Temperature? Modern Outlook on the Concept of Temperature
by Edward Bormashenko
Entropy 2020, 22(12), 1366; https://doi.org/10.3390/e22121366 - 3 Dec 2020
Cited by 4 | Viewed by 5119
Abstract
The meaning and evolution of the notion of “temperature” (which is a key concept for the condensed and gaseous matter theories) are addressed from different points of view. The concept of temperature has turned out to be much more fundamental than conventionally thought. [...] Read more.
The meaning and evolution of the notion of “temperature” (which is a key concept for the condensed and gaseous matter theories) are addressed from different points of view. The concept of temperature has turned out to be much more fundamental than conventionally thought. In particular, the temperature may be introduced for systems built of a “small” number of particles and particles at rest. The Kelvin temperature scale may be introduced into quantum and relativistic physics due to the fact that the efficiency of the quantum and relativistic Carnot cycles coincides with that of the classical one. The relation of temperature with the metrics of the configurational space describing the behavior of systems built from non-interacting particles is demonstrated. The role of temperature in constituting inertia and gravity forces treated as entropy forces is addressed. The Landauer principle asserts that the temperature of a system is the only physical value defining the energy cost of the isothermal erasure of a single bit of information. The fundamental role of the temperature of the cosmic microwave background in modern cosmology is discussed. The range of problems and controversies related to the negative absolute temperature is treated. Full article
(This article belongs to the Special Issue The Landauer Principle: Meaning, Physical Roots and Applications)
Show Figures

Figure 1

47 pages, 5007 KiB  
Article
Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine
by Roie Dann, Ronnie Kosloff and Peter Salamon
Entropy 2020, 22(11), 1255; https://doi.org/10.3390/e22111255 - 4 Nov 2020
Cited by 32 | Viewed by 4090
Abstract
Incorporating time into thermodynamics allows for addressing the tradeoff between efficiency and power. A qubit engine serves as a toy model in order to study this tradeoff from first principles, based on the quantum theory of open systems. We study the quantum origin [...] Read more.
Incorporating time into thermodynamics allows for addressing the tradeoff between efficiency and power. A qubit engine serves as a toy model in order to study this tradeoff from first principles, based on the quantum theory of open systems. We study the quantum origin of irreversibility, originating from heat transport, quantum friction, and thermalization in the presence of external driving. We construct various finite-time engine cycles that are based on the Otto and Carnot templates. Our analysis highlights the role of coherence and the quantum origin of entropy production. Full article
(This article belongs to the Special Issue Finite-Time Thermodynamics)
Show Figures

Graphical abstract

21 pages, 468 KiB  
Article
Geometric Optimisation of Quantum Thermodynamic Processes
by Paolo Abiuso, Harry J. D. Miller, Martí Perarnau-Llobet and Matteo Scandi
Entropy 2020, 22(10), 1076; https://doi.org/10.3390/e22101076 - 24 Sep 2020
Cited by 59 | Viewed by 5379
Abstract
Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and connect different frameworks where it emerges in the quantum regime: [...] Read more.
Differential geometry offers a powerful framework for optimising and characterising finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical introduction to the notion of thermodynamic length. We review and connect different frameworks where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent Lindblad master equations, and discrete processes. A geometric lower bound on entropy production in finite-time is then presented, which represents a quantum generalisation of the original classical bound. Following this, we review and develop some general principles for the optimisation of thermodynamic processes in the linear-response regime. These include constant speed of control variation according to the thermodynamic metric, absence of quantum coherence, and optimality of small cycles around the point of maximal ratio between heat capacity and relaxation time for Carnot engines. Full article
(This article belongs to the Special Issue Finite-Time Thermodynamics)
Show Figures

Figure 1

21 pages, 3551 KiB  
Article
Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit
by Zewei Meng, Lingen Chen and Feng Wu
Entropy 2020, 22(4), 457; https://doi.org/10.3390/e22040457 - 17 Apr 2020
Cited by 18 | Viewed by 2702
Abstract
At the classical limit, a multi-stage, endoreversible Carnot cycle model of quantum heat engine (QHE) working with non-interacting harmonic oscillators systems is established in this paper. A simplified combined cycle, where all sub-cycles work at maximum power output (MPO), is analyzed under two [...] Read more.
At the classical limit, a multi-stage, endoreversible Carnot cycle model of quantum heat engine (QHE) working with non-interacting harmonic oscillators systems is established in this paper. A simplified combined cycle, where all sub-cycles work at maximum power output (MPO), is analyzed under two types of combined form: constraint of cycle period or constraint of interstage heat current. The expressions of power and the corresponding efficiency under two types of combined constrains are derived. A general combined cycle, in which all sub-cycles run at arbitrary state, is further investigated under two types of combined constrains. By introducing the Lagrangian function, the MPO of two-stage combined QHE with different intermediate temperatures is obtained, utilizing numerical calculation. The results show that, for the simplified combined cycle, the total power decreases and heat exchange from hot reservoir increases under two types of constrains with the increasing number (N) of stages. The efficiency of the combined cycle decreases under the constraints of the cycle period, but keeps constant under the constraint of interstage heat current. For the general combined cycle, three operating modes, including single heat engine mode at low “temperature” (SM1), double heat engine mode (DM) and single heat engine mode at high “temperature” (SM2), appear as intermediate temperature varies. For the constraint of cycle period, the MPO is obtained at the junction of DM mode and SM2 mode. For the constraint of interstage heat current, the MPO keeps constant during DM mode, in which the two sub-cycles compensate each other. Full article
(This article belongs to the Section Quantum Information)
Show Figures

Figure 1

18 pages, 1620 KiB  
Article
Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine
by Sara Kheradsoud, Nastaran Dashti, Maciej Misiorny, Patrick P. Potts, Janine Splettstoesser and Peter Samuelsson
Entropy 2019, 21(8), 777; https://doi.org/10.3390/e21080777 - 8 Aug 2019
Cited by 32 | Viewed by 4603
Abstract
The trade-off between large power output, high efficiency and small fluctuations in the operation of heat engines has recently received interest in the context of thermodynamic uncertainty relations (TURs). Here we provide a concrete illustration of this trade-off by theoretically investigating the operation [...] Read more.
The trade-off between large power output, high efficiency and small fluctuations in the operation of heat engines has recently received interest in the context of thermodynamic uncertainty relations (TURs). Here we provide a concrete illustration of this trade-off by theoretically investigating the operation of a quantum point contact (QPC) with an energy-dependent transmission function as a steady-state thermoelectric heat engine. As a starting point, we review and extend previous analysis of the power production and efficiency. Thereafter the power fluctuations and the bound jointly imposed on the power, efficiency, and fluctuations by the TURs are analyzed as additional performance quantifiers. We allow for arbitrary smoothness of the transmission probability of the QPC, which exhibits a close to step-like dependence in energy, and consider both the linear and the non-linear regime of operation. It is found that for a broad range of parameters, the power production reaches nearly its theoretical maximum value, with efficiencies more than half of the Carnot efficiency and at the same time with rather small fluctuations. Moreover, we show that by demanding a non-zero power production, in the linear regime a stronger TUR can be formulated in terms of the thermoelectric figure of merit. Interestingly, this bound holds also in a wide parameter regime beyond linear response for our QPC device. Full article
(This article belongs to the Special Issue Quantum Transport in Mesoscopic Systems)
Show Figures

Figure 1

5 pages, 202 KiB  
Proceeding Paper
Slow Dynamics and Thermodynamics of Open Quantum Systems
by Vasco Cavina, Andrea Mari and Vittorio Giovannetti
Proceedings 2019, 12(1), 19; https://doi.org/10.3390/proceedings2019012019 - 10 Jul 2019
Cited by 1 | Viewed by 1175
Abstract
We develop a perturbation theory to estimate the finite time corrections around a quasi static trajectory, in which a quantum system is able to equilibrate at each instant with its environment. The results are then applied to non equilibrium thermodynamics, in which context [...] Read more.
We develop a perturbation theory to estimate the finite time corrections around a quasi static trajectory, in which a quantum system is able to equilibrate at each instant with its environment. The results are then applied to non equilibrium thermodynamics, in which context we are able to provide a connection between the irreversible contributions and the microscopic details of the dynamical map generating the evolution. Turning the attention to finite time Carnot engines, we found a universal connection between the spectral density esponent of the hot/cold thermal baths and the efficiency at maximum power, giving also a new interpretation to already known results such as the Curzon-Ahborn and the Schmiedl-Seifert efficiencies. Full article
(This article belongs to the Proceedings of 11th Italian Quantum Information Science conference (IQIS2018))
20 pages, 743 KiB  
Article
Quantum Information Remote Carnot Engines and Voltage Transformers
by Jose Diazdelacruz and Miguel Angel Martin-Delgado
Entropy 2019, 21(2), 127; https://doi.org/10.3390/e21020127 - 30 Jan 2019
Cited by 2 | Viewed by 3251
Abstract
A physical system out of thermal equilibrium is a resource for obtaining useful work when a heat bath at some temperature is available. Information Heat Engines are the devices which generalize the Szilard cylinders and make use of the celebrated Maxwell demons to [...] Read more.
A physical system out of thermal equilibrium is a resource for obtaining useful work when a heat bath at some temperature is available. Information Heat Engines are the devices which generalize the Szilard cylinders and make use of the celebrated Maxwell demons to this end. In this paper, we consider a thermo-chemical reservoir of electrons which can be exchanged for entropy and work. Qubits are used as messengers between electron reservoirs to implement long-range voltage transformers with neither electrical nor magnetic interactions between the primary and secondary circuits. When they are at different temperatures, the transformers work according to Carnot cycles. A generalization is carried out to consider an electrical network where quantum techniques can furnish additional security. Full article
(This article belongs to the Special Issue Quantum Thermodynamics II)
Show Figures

Figure 1

10 pages, 1134 KiB  
Article
Efficiency of Harmonic Quantum Otto Engines at Maximal Power
by Sebastian Deffner
Entropy 2018, 20(11), 875; https://doi.org/10.3390/e20110875 - 15 Nov 2018
Cited by 76 | Viewed by 6299
Abstract
Recent experimental breakthroughs produced the first nano heat engines that have the potential to harness quantum resources. An instrumental question is how their performance measures up against the efficiency of classical engines. For single ion engines undergoing quantum Otto cycles it has been [...] Read more.
Recent experimental breakthroughs produced the first nano heat engines that have the potential to harness quantum resources. An instrumental question is how their performance measures up against the efficiency of classical engines. For single ion engines undergoing quantum Otto cycles it has been found that the efficiency at maximal power is given by the Curzon–Ahlborn efficiency. This is rather remarkable as the Curzon–Alhbron efficiency was originally derived for endoreversible Carnot cycles. Here, we analyze two examples of endoreversible Otto engines within the same conceptual framework as Curzon and Ahlborn’s original treatment. We find that for endoreversible Otto cycles in classical harmonic oscillators the efficiency at maximal power is, indeed, given by the Curzon–Ahlborn efficiency. However, we also find that the efficiency of Otto engines made of quantum harmonic oscillators is significantly larger. Full article
Show Figures

Figure 1

4111 KiB  
Article
Maximum Power Output of Quantum Heat Engine with Energy Bath
by Shengnan Liu and Congjie Ou
Entropy 2016, 18(6), 205; https://doi.org/10.3390/e18060205 - 25 May 2016
Cited by 20 | Viewed by 4356
Abstract
The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat [...] Read more.
The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat engine consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine works between the energy and heat baths. Combining two engines of this kind, it is possible to realize the quantum Carnot engine. Furthermore, considering finite velocity of change of the potential shape, here an infinite square well with moving walls, the power output of the engine is discussed. It is found that the efficiency and power output are both closely dependent on the initial and final states of the quantum isothermal process. The performance of the engine cycle is shown to be optimized by control of the occupation probability of the ground state, which is determined by the temperature and the potential width. The relation between the efficiency and power output is also discussed. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

Back to TopTop