Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,952)

Search Parameters:
Keywords = radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4746 KiB  
Review
Assessment of Microvascular Function Based on Flowmotion Monitored by the Flow-Mediated Skin Fluorescence Technique
by Andrzej Marcinek, Joanna Katarzynska, Katarzyna Cypryk, Agnieszka Los-Stegienta, Jolanta Slowikowska-Hilczer, Renata Walczak-Jedrzejowska, Jacek Zielinski and Jerzy Gebicki
Biosensors 2024, 14(10), 459; https://doi.org/10.3390/bios14100459 (registering DOI) - 25 Sep 2024
Abstract
This review summarizes studies dedicated to the assessment of microvascular function based on microcirculatory oscillations monitored by the Flow-Mediated Skin Fluorescence (FMSF) technique. Two approaches are presented. The first approach uses oscillatory parameters measured under normoxic conditions, expressed as flowmotion (FM), vasomotion (VM), [...] Read more.
This review summarizes studies dedicated to the assessment of microvascular function based on microcirculatory oscillations monitored by the Flow-Mediated Skin Fluorescence (FMSF) technique. Two approaches are presented. The first approach uses oscillatory parameters measured under normoxic conditions, expressed as flowmotion (FM), vasomotion (VM), and the normoxia oscillatory index (NOI). These parameters have been used for the identification of impaired microcirculatory oscillations associated with intense physical exercise, post-COVID syndrome, psychological stress, and erectile dysfunction. The second approach involves characterization of the microcirculatory response to hypoxia based on the measurement of hypoxia sensitivity (HS). The HS parameter is used to characterize microvascular complications in diabetes, such as diabetic kidney disease and diabetic foot ulcers. Based on research conducted by the authors of this review, the FMSF parameter ranges characterizing microvascular function are presented. The diagnostic approach to assessing microvascular function based on flowmotion monitored by the FMSF technique has a wide range of applications and the potential to be integrated into widespread medical practice. Full article
(This article belongs to the Section Biosensors and Healthcare)
17 pages, 7561 KiB  
Article
Light Beam Scattering from the Metal Surface with a Complex Mono- and Two-Periodic Microstructure Formed with Femtosecond Laser Radiation
by Sergey Dobrotvorskiy, Borys A. Aleksenko, Yevheniia Basova, Iaroslav M. Gnilitskyi, Mikołaj Kościński and José Machado
Appl. Sci. 2024, 14(19), 8662; https://doi.org/10.3390/app14198662 (registering DOI) - 25 Sep 2024
Abstract
Currently, the technology of imparting the necessary reflective properties to a surface is becoming increasingly important. Darkening the surface and matting it helps to diffuse the reflected beam and prevent glare. The surface’s reflective properties are determined by its microstructure. Modern pico- and [...] Read more.
Currently, the technology of imparting the necessary reflective properties to a surface is becoming increasingly important. Darkening the surface and matting it helps to diffuse the reflected beam and prevent glare. The surface’s reflective properties are determined by its microstructure. Modern pico- and femtosecond lasers make it possible to obtain surfaces with high precision and create various LIPSS (laser-induced periodic surface structure) types. In this article, we describe the process of formation of a complex two-periodic microstructure on the surface of AISI 321 stainless steel under the influence of radiation from femtosecond lasers and describe the process of scattering of a light beam by the resulting surface. Modeling shows that the presence of an additional transparent coating on a flat surface does not improve its scattering properties and does not eliminate glare. In the event that a complex two-periodic structure is formed on the reflective surface and the coating surface, the nature of the reflection has a clearly defined scattered character, regardless of the angle of incidence of the light beam. This study shows the feasibility and effectiveness of forming a two-periodic structure in order to give it stealth characteristics and reduce visibility. Full article
(This article belongs to the Collection Optical Design and Engineering)
16 pages, 901 KiB  
Article
Effect of Photoluminophore Light-Correcting Coatings and Bacterization by Associative Microorganisms on the Growth and Productivity of Brassica juncea L. Plants
by Natalia S. Zakharchenko, Elena B. Rukavtsova, Ilia V. Yampolsky, Dmitry O. Balakirev, Ivan V. Dyadishchev, Sergey A. Ponomarenko, Yuriy N. Luponosov, Andrey E. Filonov, Pavel A. Mikhailov, Anton N. Zvonarev, Lenar I. Akhmetov, Vasily V. Terentyev, Alexandra Yu. Khudyakova, Lubov V. Zalomova, Sergey V. Tarlachkov, Alexander V. Aripovsky, Irina F. Puntus and Robert N. Khramov
Microbiol. Res. 2024, 15(4), 1957-1972; https://doi.org/10.3390/microbiolres15040131 (registering DOI) - 25 Sep 2024
Abstract
The effect of a coating material containing organic photoluminophore (PL) on the growth and development of mustard Brassica juncea L. plants colonized with beneficial associative bacteria Pseudomonas putida KT2442 and Rhodococcus erythropolis X5 was studied in vitro and in vivo. Plants grown [...] Read more.
The effect of a coating material containing organic photoluminophore (PL) on the growth and development of mustard Brassica juncea L. plants colonized with beneficial associative bacteria Pseudomonas putida KT2442 and Rhodococcus erythropolis X5 was studied in vitro and in vivo. Plants grown with the use of microbial bacterization in combination with a photoluminophore coating (PLC) had significantly faster growth rates in vitro (2.1 times faster, P. putida; 1.8 times faster, R. erythropolis) than those grown using PLC alone (1.2 times faster). The leaves of plants grown with PLC had higher contents of glucose and fructose (28.4 ± 0.3% more glucose and 60.4 ± 0.3% more fructose accumulated compared to plants grown without PLC). It was found that seed weights and seed number increased 1.9-fold and 1.6-fold, respectively, for plants grown with PLC and colonized with beneficial P. putida KT2442 bacteria. The stimulatory effect of PLC on photosynthetic parameters of Photosystem II (PSII) was observed in colonized plants grown in vitro. For the first time, it was shown that providing plants with a PLC for only 4 weeks may make it possible to support further plant growth without PLC to obtain higher yields in the future. Thus, PLCs that convert shorter-wavelength radiation into red light may induce enhancement of biochemical processes not only in plants but also in microorganisms that supply plants with growth regulators and other active compounds. The results indicate the need for further research to understand the mechanisms of photobiological and photoregulatory systems in the interaction of microbes and plants. Full article
14 pages, 6553 KiB  
Article
Therapeutic Effect of Boron Neutron Capture Therapy on Boronophenylalanine Administration via Cerebrospinal Fluid Circulation in Glioma Rat Models
by Sachie Kusaka, Nikolaos Voulgaris, Kazuki Onishi, Junpei Ueda, Shigeyoshi Saito, Shingo Tamaki, Isao Murata, Takushi Takata and Minoru Suzuki
Cells 2024, 13(19), 1610; https://doi.org/10.3390/cells13191610 (registering DOI) - 25 Sep 2024
Abstract
In recent years, various drug delivery systems circumventing the blood–brain barrier have emerged for treating brain tumors. This study aimed to improve the efficacy of brain tumor treatment in boron neutron capture therapy (BNCT) using cerebrospinal fluid (CSF) circulation to deliver boronophenylalanine (BPA) [...] Read more.
In recent years, various drug delivery systems circumventing the blood–brain barrier have emerged for treating brain tumors. This study aimed to improve the efficacy of brain tumor treatment in boron neutron capture therapy (BNCT) using cerebrospinal fluid (CSF) circulation to deliver boronophenylalanine (BPA) to targeted tumors. Previous experiments have demonstrated that boron accumulation in the brain cells of normal rats remains comparable to that after intravenous (IV) administration, despite BPA being administered via CSF at significantly lower doses (approximately 1/90 of IV doses). Based on these findings, BNCT was conducted on glioma model rats at the Kyoto University Research Reactor Institute (KUR), with BPA administered via CSF. This method involved implanting C6 cells into the brains of 8-week-old Wistar rats, followed by administering BPA and neutron irradiation after a 10-day period. In this study, the rats were divided into four groups: one receiving CSF administration, another receiving IV administration, and two control groups without BPA administration, with one subjected to neutron irradiation and the other not. In the CSF administration group, BPA was infused from the cisterna magna at 8 mg/kg/h for 2 h, while in the IV administration group, BPA was intravenously administered at 350 mg/kg via the tail vein over 1.5 h. Thermal neutron irradiation (5 MW) for 20 min, with an average fluence of 3.8 × 1012/cm2, was conducted at KUR’s heavy water neutron irradiation facility. Subsequently, all of the rats were monitored under identical conditions for 7 days, with pre- and post-irradiation tumor size assessed through MRI and pathological examination. The results indicate a remarkable therapeutic efficacy in both BPA-administered groups (CSF and IV). Notably, the rats treated with CSF administration exhibited diminished BPA accumulation in normal tissue compared to those treated with IV administration, alongside maintaining excellent overall health. Thus, CSF-based BPA administration holds promise as a novel drug delivery mechanism in BNCT. Full article
(This article belongs to the Special Issue Cell Biology for Boron Neutron Capture Therapy (BNCT))
Show Figures

Figure 1

3 pages, 756 KiB  
Abstract
UV Light-Induced Response Degradation Characteristics of Silicon-Based Detectors
by Daniel Gäbler and Pablo F. Siles
Proceedings 2024, 97(1), 230; https://doi.org/10.3390/proceedings2024097230 (registering DOI) - 25 Sep 2024
Abstract
High energy radiation is known to potentially impact silicon-based optical sensors adversely, either permanently or reversibly [...] Full article
Show Figures

Figure 1

15 pages, 2418 KiB  
Article
Lymphopenia Induced by Different Neoadjuvant Chemo-Radiotherapy Schedules in Patients with Rectal Cancer: Bone Marrow as an Organ at Risk
by Christos Nanos, Ioannis M. Koukourakis, Admir Mulita, Raphaela Avgousti, Vassilios Kouloulias, Anna Zygogianni and Michael I. Koukourakis
Curr. Oncol. 2024, 31(10), 5774-5788; https://doi.org/10.3390/curroncol31100429 (registering DOI) - 25 Sep 2024
Abstract
Radiotherapy (RT)-induced lymphopenia may hinder the anti-tumor immune response. Preoperative RT or chemo-RT (CRT) for locally advanced rectal cancer is a standard therapeutic approach, while immunotherapy has been approved for mismatch repair-deficient rectal tumors. We retrospectively analyzed 98 rectal adenocarcinoma patients undergoing neoadjuvant [...] Read more.
Radiotherapy (RT)-induced lymphopenia may hinder the anti-tumor immune response. Preoperative RT or chemo-RT (CRT) for locally advanced rectal cancer is a standard therapeutic approach, while immunotherapy has been approved for mismatch repair-deficient rectal tumors. We retrospectively analyzed 98 rectal adenocarcinoma patients undergoing neoadjuvant CRT with VMAT (groups A, B, C) or IMRT (group D) techniques, with four different RT schemes: group A (n = 24): 25 Gy/5 Gy/fraction plus a 0.2 Gy/fraction rectal tumor boost; group B (n = 22): 34 Gy/3.4 Gy/fraction, with a 1-week treatment break after the first five RT fractions; group C (n = 20): 46 Gy/2 Gy/fraction plus a 0.2 Gy/fraction rectal tumor boost; group D (n = 32): 45 Gy/1.8 Gy/fraction followed by 5.4 Gy/1.8 Gy/fraction to the rectal tumor. We examined the effect of the time-corrected normalized total dose (NTD-T) to the BM on lymphopenia. Groups A and B (hypofractionated RT) had significantly higher lymphocyte counts (LCs) after RT than groups C and D (p < 0.03). An inverse association between the LCs after RT and NTD-T was demonstrated (p = 0.01). An NTD-T threshold of 30 Gy delivered to 30% of the BM volume emerged as a potential constraint for RT planning, which could be successfully integrated in the RT plan. Hypofractionated and accelerated RT schemes, and BM-sparing techniques may reduce lymphocytic damage and prove critical for immuno-RT clinical trials. Full article
22 pages, 6928 KiB  
Review
Problems of Measuring Gas Content in Oil in a Two-Phase Flow: A Review
by Cezary Edling and Paweł Śliwiński
Energies 2024, 17(19), 4800; https://doi.org/10.3390/en17194800 (registering DOI) - 25 Sep 2024
Abstract
In view of the necessity of measuring the air content in oil in two-phase flows in the context of general industry, a review of the most popular methods of measuring the air content in oil was carried out. This review includes an assessment [...] Read more.
In view of the necessity of measuring the air content in oil in two-phase flows in the context of general industry, a review of the most popular methods of measuring the air content in oil was carried out. This review includes an assessment of their advantages and disadvantages and of whether they meet criteria such as the degree of filling, the size and number of bubbles, verification, the absence of additional pressure drops, simplicity, and repeatability. In the review, the following methods were examined: the classic trapping method, a modified trapping method, a trapping method using hydrostatic pressure loss, the pressure loss due to frictional flow resistance, the pressure loss with a rapid increase in diameter, the pressure drop in a Venturi tube, the pressure drop in an orifice, a method using the Coriolis effect, the electrical resistance method, the electrical conductivity method, the electromagnetic method, the electrical capacitance method, the thermal anemometry method, the liquid–solid contact electrification method, the photographic method, holography, light scattering, sound dispersion, the ultrasonic transit-time method, X-ray radiation, gamma radiation, neutron radiation, and fiber-optic methods. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

20 pages, 1068 KiB  
Article
Endemic Radiation of African Moonfish, Selene dorsalis (Gill 1863), in the Eastern Atlantic: Mitogenomic Characterization and Phylogenetic Implications of Carangids (Teleostei: Carangiformes)
by Emmanuel Ofosu Mireku Ewusi, Soo Rin Lee, Ah Ran Kim, Yunji Go, Hsu Htoo, Sangdeok Chung, Muhammad Hilman Fu’adil Amin, Sapto Andriyono, Hyun-Woo Kim and Shantanu Kundu
Biomolecules 2024, 14(10), 1208; https://doi.org/10.3390/biom14101208 (registering DOI) - 25 Sep 2024
Abstract
This study offers an in-depth analysis of the mitochondrial genome of Selene dorsalis (Gill 1863), a species native to the Eastern Atlantic Ocean. The circular mitochondrial DNA molecule measures 16,541 base pairs and comprises 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, [...] Read more.
This study offers an in-depth analysis of the mitochondrial genome of Selene dorsalis (Gill 1863), a species native to the Eastern Atlantic Ocean. The circular mitochondrial DNA molecule measures 16,541 base pairs and comprises 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and a control region (CR). The nucleotide composition exhibits a notable adenine-thymine (AT) bias, accounting for 53.13%, which aligns with other species in the Carangidae family. Most PCGs initiate with the ATG codon, with the exception of Cytochrome C oxidase subunit I, which starts with GTG. Analysis of relative synonymous codon usage reveals that leucine and serine are the most prevalent amino acids in the mitochondrial genome of S. dorsalis and its congeners (S. vomer and S. setapinnis). All tRNAs display the typical cloverleaf structure, though tRNA Serine (S1) lacks a dihydrouracil arm. Pairwise comparisons of synonymous and nonsynonymous substitutions for all PCGs yielded values below ‘1’, indicating strong purifying selection. The CR spans 847 bp, representing 5.12% of the mitochondrial genome, and is characterized by high AT content (62.81%). It is situated between tRNA-Pro (TGG) and tRNA-Phe (GAA). The CR contains conserved sequence blocks, with CSB-1 being the longest at 22 bp and CSB-D the shortest at 18 bp. Phylogenetic analysis, using Bayesian and Maximum-likelihood trees constructed from concatenated PCGs across 72 species, successfully differentiates S. dorsalis from other carangids. This study also explores how ocean currents and gyres might influence lineage diversification and parapatric speciation of Selene species between the Atlantic and Pacific Oceans. These results highlight the importance of the mitochondrial genome in elucidating the structural organization and evolutionary dynamics of S. dorsalis and its relatives within marine ecosystems. Full article
23 pages, 2613 KiB  
Review
IXPE View of BH XRBs during the First 2.5 Years of the Mission
by Michal Dovčiak, Jakub Podgorný, Jiří Svoboda, James F. Steiner, Philip Kaaret, Henric Krawczynski, Adam Ingram, Vadim Kravtsov, Lorenzo Marra, Fabio Muleri, Javier A. García, Guglielmo Mastroserio, Romana Mikušincová, Ajay Ratheesh and Nicole Rodriguez Cavero
Galaxies 2024, 12(5), 54; https://doi.org/10.3390/galaxies12050054 (registering DOI) - 25 Sep 2024
Abstract
Accreting stellar-mass black holes represent unique laboratories for studying matter and radiation under the influence of extreme gravity. They are highly variable sources going through different accretion states, showing various components in their X-ray spectra from the thermal emission of the accretion disc [...] Read more.
Accreting stellar-mass black holes represent unique laboratories for studying matter and radiation under the influence of extreme gravity. They are highly variable sources going through different accretion states, showing various components in their X-ray spectra from the thermal emission of the accretion disc dominating in the soft state to the up-scattered Comptonisation component from an X-ray corona in the hard state. X-ray polarisation measurements are particularly sensitive to the geometry of the X-ray scatterings and can thus constrain the orientation and relative positions of the innermost components of these systems. The IXPE mission has observed about a dozen stellar-mass black holes with masses up to 20 solar massesin X-ray binaries with different orientations and in various accretion states. The low-inclination sources in soft states have shown a low fraction of polarisation. On the other hand, several sources in soft and hard states have revealed X-ray polarisation higher than expected, which poses significant challenges for theoretical interpretation, with 4U 1630−47 being one of the most puzzling sources. IXPE has measured the spin of three black holes via the measurement of their polarisation properties in the soft emission state. In each of the three cases, the new results agree with the constraints from the spectral observations. The polarisation observations of the black hole X-ray transient Swift J1727.8−1613 across its entire outburst has revealed that the soft-state polarisation is much weaker than the hard-state polarisation. Remarkably, the observations furthermore show that the polarisation of the bright hard state and that of the 100 times less luminous dim hard state are identical within the accuracy of the measurement. For sources with a radio jet, the electric field polarisation tends to align with the radio jet, indicating the equatorial geometry of the X-ray corona, e.g., in the case of Cyg X−1. In the unique case of Cyg X−3, where the polarisation is perpendicular to the radio jet, the IXPE observations reveal the presence and geometry of obscuring material hiding this object from our direct view. The polarisation measurements acquired by the IXPE mission during its first 2.5 years have provided unprecedented insights into the geometry and physical processes of accreting stellar-mass black holes, challenging existing theoretical models and offering new avenues for understanding these extreme systems. Full article
(This article belongs to the Special Issue X-ray Polarization: A New Era Begins)
15 pages, 3797 KiB  
Technical Note
Estimation of IFOV Inter-Channel Deviation for Microwave Radiation Imager Onboard FY-3G Satellite
by Pengjuan Yao, Shengli Wu, Yang Guo, Jian Shang, Kesong Dong, Weiwei Xu and Jiachen Wang
Remote Sens. 2024, 16(19), 3571; https://doi.org/10.3390/rs16193571 - 25 Sep 2024
Abstract
The Microwave Radiation Imager (MWRI) onboard the FengYun satellite plays a crucial role in global change monitoring and numerical weather prediction. Estimating and correcting geolocation errors are important to retrieving accurate geophysical variables. However, the instantaneous field of view (IFOV) inter-channel deviation, which [...] Read more.
The Microwave Radiation Imager (MWRI) onboard the FengYun satellite plays a crucial role in global change monitoring and numerical weather prediction. Estimating and correcting geolocation errors are important to retrieving accurate geophysical variables. However, the instantaneous field of view (IFOV) inter-channel deviation, which is mainly caused by the structure mounting error and measurement error of feedhorns, is less studied. In this present study, we constructed a general theoretical model to automatically estimate the IFOV inter-channel deviations suitable for conical-scanning instruments. The model can automatically detect the along-track and across-track vectors that pass through the land–sea boundary points and are perpendicular to the actual coastlines. Regarding the midpoints of the vectors as the brightness temperature (Tb) inflection points, the IFOV inter-channel deviation is the pixel offset or distance of the maximum gradients of the Tb near the inflection points for each channel relative to the 89-GHz V-pol channel. We tested the model’s operational performance using the FY-3G/MWRI-Rainfall Mission (MWRI-RM) observations. Considering that parameter uploading adjusted the IFOV inter-channel deviations, the model’s validity was verified by comparing the adjustments calculated by the model with the theoretical changes caused by parameter uploading. The result shows that the differences between them for all window channels are less than 100 m, indicating the model’s effectiveness in evaluating the IFOV inter-channel deviation for the MWRI-RM. Furthermore, the estimated on-orbit IFOV inter-channel deviations for the MWRI-RM show that all channel deviations are less than 1 km, meeting the instrument’s design requirement of 2 km. We believe this study will provide a foundation for IFOV inter-channel registration of passive microwave payloads and spatial matching of multiple payloads. Full article
Show Figures

Figure 1

29 pages, 6252 KiB  
Review
Red Seaweed (Rhodophyta) Phycocolloids: A Road from the Species to the Industry Application
by Madalena Mendes, João Cotas, Diana Pacheco, Kay Ihle, Alina Hillinger, Miguel Cascais, João Carlos Marques, Leonel Pereira and Ana M. M. Gonçalves
Mar. Drugs 2024, 22(10), 432; https://doi.org/10.3390/md22100432 - 25 Sep 2024
Abstract
Seaweed polysaccharides are versatile both in their functions in seaweed physiology and in their practical applications in society. However, their content and quality vary greatly. This review discusses the main factors that influence the yield and quality of polysaccharides, specifically carrageenans and agars [...] Read more.
Seaweed polysaccharides are versatile both in their functions in seaweed physiology and in their practical applications in society. However, their content and quality vary greatly. This review discusses the main factors that influence the yield and quality of polysaccharides, specifically carrageenans and agars (sulfated galactans) found in red algae species (Rhodophyta). In addition, its historical, current, and emerging applications are also discussed. Carrageenan has been influenced mainly by photosynthetically active radiation (PAR) and nitrogen, while its relationship with temperature has not yet been replicated by recent studies. Agar’s seasonal trend has also been found to be more ambiguous than stated before, with light, temperature, nutrients, and pH being influencing factors. In this review, it is also shown that, depending on the compound type, seaweed polysaccharides are influenced by very different key factors, which can be crucial in seaweed aquaculture to promote a high yield and quality of polysaccharides. Additionally, factors like the extraction method and storage of polysaccharides also influence the yield and quality of these compounds. This review also highlights the drawbacks and inadequacy inherent from the conventional (or current) extraction technology approaches. Full article
(This article belongs to the Special Issue Polysaccharides from Marine Environment)
Show Figures

Figure 1

16 pages, 2262 KiB  
Article
Decontamination Potential of Ultraviolet Type C Radiation in Water Treatment Systems: Targeting Microbial Inactivation
by Abayomi Olusegun Adeniyi and Modupe Olufunmilayo Jimoh
Water 2024, 16(19), 2725; https://doi.org/10.3390/w16192725 - 25 Sep 2024
Abstract
Access to safe water and sanitation is a critical global challenge, posing significant health risks worldwide due to waterborne diseases. This study investigates the efficacy of ultraviolet type C radiation as a disinfection method for improving water quality. The research elucidates UV-C’s mechanism [...] Read more.
Access to safe water and sanitation is a critical global challenge, posing significant health risks worldwide due to waterborne diseases. This study investigates the efficacy of ultraviolet type C radiation as a disinfection method for improving water quality. The research elucidates UV-C’s mechanism of action, highlighting its ability to disrupt DNA and RNA replication, thereby inactivating pathogens. Furthermore, the study analyses the influence of key factors on UV-C disinfection effectiveness, including water turbidity and the presence of dissolved organic matter, which can attenuate UV-C penetration and reduce treatment efficiency. The experimental results demonstrate a substantial reduction in microbial content following UV-C treatment. River water samples exhibited a 57.143% reduction in microbial load, while well water samples showed a 50% reduction. Notably, Escherichia coli (E. coli) concentrations decreased significantly, with an 83.33% reduction in well water and a 62.5% reduction in borehole water. This study makes a novel contribution to the understanding of UV-C disinfection by identifying the presence of resistant organisms, including Adenoviruses, Bacterial spores, and the Protozoan Acanthamoeba, in water samples. This finding expands the scope of UV-C research beyond easily culturable bacteria. To address this challenge, future investigations should explore synergistic disinfection strategies, such as combining UV-C treatment with advanced oxidation processes. Optimising UV-C system designs and developing robust, real-time monitoring systems capable of detecting and quantifying known and emerging UV-resistant pathogens are crucial for ensuring comprehensive water decontamination. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

50 pages, 16295 KiB  
Review
Application of Thermal Batteries in Greenhouses
by Seyed Soheil Mousavi Ajarostaghi, Leyla Amiri and Sébastien Poncet
Appl. Sci. 2024, 14(19), 8640; https://doi.org/10.3390/app14198640 (registering DOI) - 25 Sep 2024
Abstract
One of the key issues confronting modern greenhouses is the need to supply the necessary energy in an environmentally friendly manner to facilitate heating and cooling processes within greenhouses. Solar radiation entering the greenhouse during the day can sometimes be more than the [...] Read more.
One of the key issues confronting modern greenhouses is the need to supply the necessary energy in an environmentally friendly manner to facilitate heating and cooling processes within greenhouses. Solar radiation entering the greenhouse during the day can sometimes be more than the energy demand of the greenhouse. In contrast, there are cases where the greenhouse must dissipate a significant amount of heat, absorbed over a long period, either naturally or forcibly, during the cooling process. Moreover, the system’s efficiency could be enhanced if there is a mechanism capable of capturing heat expelled during greenhouse cooling and redistributing it on demand. Employing thermal energy storage is critical for maintaining stable temperatures, assuring energy efficiency, encouraging sustainability, and enabling year-round production. This technique ensures a safe environment for crops and eliminates temperature fluctuations inside the greenhouse. Nocturnal thermal energy storage, storing thermal energy during the daytime for later use at night, is essential to managing a contemporary greenhouse because it promotes consistent crop growth, sustainability, and profitability, particularly in areas with severe winters and significant day-to-night temperature variations. This work reviews various types of thermal energy storage systems employed in previous works focusing on greenhouse applications by researchers and categorizes them based on efficient factors. Full article
(This article belongs to the Special Issue Feature Review Papers in Energy Science and Technology)
Show Figures

Figure 1

15 pages, 9118 KiB  
Article
Radioprotection Performance Evaluation of 3D-Printed and Conventional Heat-Cured Dental Resins for Radiotherapy Prostheses
by Jiangyu Wang, Mai Murase, Yuka I. Sumita, Ryoichi Notake, Masako Akiyama, Ryoichi Yoshimura and Noriyuki Wakabayashi
J. Funct. Biomater. 2024, 15(10), 282; https://doi.org/10.3390/jfb15100282 - 25 Sep 2024
Abstract
3D printing is increasingly used in dentistry, with biocompatible resins playing a key role. This study compared the radioprotective properties of a commonly used 3D-printed resin (Formlabs surgical guide resin) with traditional heat-cured resin and examined the relationship between material thickness and radiation [...] Read more.
3D printing is increasingly used in dentistry, with biocompatible resins playing a key role. This study compared the radioprotective properties of a commonly used 3D-printed resin (Formlabs surgical guide resin) with traditional heat-cured resin and examined the relationship between material thickness and radiation attenuation. The specimens consisted of 3D-printed and heat-cured resin specimens, each measuring 45 × 45 mm2, with five different thicknesses (6, 8, 10, 12, and 14 mm), totaling 100 samples. Both types of resin specimens underwent testing with 150 MU external beam radiation therapy (EBRT) and 400 cGy brachytherapy. Radiation experiments indicated that under EBRT conditions, there were no significant differences in radiation attenuation between the 3D-printed and heat-cured resins across all thickness groups. In brachytherapy, the attenuation of the 3D-printed resin was significantly lower than the heat-cured resin in the 6 mm and 8 mm groups. Specifically, attenuation rates were 48.0 ± 0.7 (3D-printed) vs. 45.2 ± 1.9 (heat-cured) in the 6 mm group, and 39.6 ± 1.3 vs. 37.5 ± 1.1 in the 8 mm group. Both resins showed significant positive linear correlations between thickness and attenuation (p < 0.001) within 6–14 mm. Thus, 3D-printed resin shows promising radioprotective properties and is a viable alternative to traditional heat-cured resin. Full article
Show Figures

Figure 1

22 pages, 14097 KiB  
Article
Spatial-Temporal Analysis of the Effects of Frost and Temperature on Vegetation in the Third Pole Based on Remote Sensing
by Caixia Dong, Xufeng Wang, Zongxing Li, Jingfeng Xiao, Gaofeng Zhu and Xing Li
Remote Sens. 2024, 16(19), 3565; https://doi.org/10.3390/rs16193565 - 25 Sep 2024
Abstract
Frost events during the growing season can significantly impact vegetation function and structure. Solar-induced chlorophyll fluorescence (SIF) and the normalized difference vegetation index (NDVI) are two widely used proxies for measuring vegetation growth. However, the extent to which NDVI and SIF respond to [...] Read more.
Frost events during the growing season can significantly impact vegetation function and structure. Solar-induced chlorophyll fluorescence (SIF) and the normalized difference vegetation index (NDVI) are two widely used proxies for measuring vegetation growth. However, the extent to which NDVI and SIF respond to frost events and how the responses vary under different temperature, precipitation, and shortwave radiation conditions are still unclear. In this study, spatially gridded meteorological data were employed to identify frost events during the growing season in the Third Pole. Subsequently, vegetation responses to the frost events were examined using remotely sensed SIF and NDVI data in different seasons in the Third Pole. During the growing season, the number of frost events declined faster from 2001 to 2009 than from 2010 to 2018. From 2001 to 2009, most alpine vegetation areas in the Third Pole exhibited greening trends. SIF exhibited a strong correlation with environmental factors and showed higher sensitivity to environmental factors compared to the NDVI. Over the past two decades, the impact of temperature and frost days on alpine vegetation has decreased while the impact of precipitation and radiation has increased. This suggests that the control mechanisms governing alpine vegetation are gradually shifting in response to ongoing climate change in the Third Pole. This study enhances our comprehension of frost changes in alpine regions during the growing season and enriches our understanding of how alpine vegetation responds to climate change. Full article
Show Figures

Figure 1

Back to TopTop