Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = radiochromic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2655 KiB  
Article
Multi-Point Sensing via Organic Optical Fibres for FLASH Proton Therapy
by Crystal Penner, Samuel Usherovich, Sophia Andru, Camille Bélanger-Champagne, Janina Hohnholz, Boris Stoeber, Cheryl Duzenli and Cornelia Hoehr
Electronics 2024, 13(11), 2211; https://doi.org/10.3390/electronics13112211 - 6 Jun 2024
Viewed by 379
Abstract
Optical fibres are gaining popularity for relative dosimetry in proton therapy due to their spatial resolution and ability for near real-time acquisition. For FLASH proton therapy, these fibres need to handle higher dose rates and larger doses than for conventional proton dose rates. [...] Read more.
Optical fibres are gaining popularity for relative dosimetry in proton therapy due to their spatial resolution and ability for near real-time acquisition. For FLASH proton therapy, these fibres need to handle higher dose rates and larger doses than for conventional proton dose rates. We developed a multi-point fibre sensor embedded in a 3D-printed phantom which can measure the profile of a FLASH proton beam. Seven PMMA fibres of 1 mm diameter were embedded in a custom 3D-printed plastic phantom of the same density as the fibres. The phantom was placed in a proton beam with FLASH dose rates at the TRIUMF Proton Therapy Research Centre (PTRC). The sensor was exposed to different proton energies, 13.5 MeV, 19 MeV and 40.4 MeV, achieved by adding PMMA bolus in front of the phantom and three different beam currents, varying the dose rates from 7.5 to 101 Gy/s. The array was able to record beam profiles in both transverse and axial directions in relative agreement with measurements from EBT-XD radiochromic films (transverse) and Monte Carlo simulations (axial). A decrease in light output over time was observed, which might be caused by radiation damage in the matrix of the fibre and characterised by an exponential decay function. Full article
(This article belongs to the Special Issue Applications of Optical Fiber Sensors)
Show Figures

Figure 1

22 pages, 11018 KiB  
Article
An Optical Reusable 2D Radiochromic Gel-Based System for Ionising Radiation Measurements in Radiotherapy
by Marek Kozicki and Piotr Maras
Molecules 2024, 29(11), 2558; https://doi.org/10.3390/molecules29112558 - 29 May 2024
Viewed by 281
Abstract
This work describes the development of a reusable 2D detector based on radiochromic reaction for radiotherapy dosimetric measurements. It consists of a radiochromic gel dosimeter in a cuboidal plastic container, scanning with a flatbed scanner, and data processing using a dedicated software package. [...] Read more.
This work describes the development of a reusable 2D detector based on radiochromic reaction for radiotherapy dosimetric measurements. It consists of a radiochromic gel dosimeter in a cuboidal plastic container, scanning with a flatbed scanner, and data processing using a dedicated software package. This tool is assessed using the example of the application of the coincidence test of radiation and mechanical isocenters for a medical accelerator. The following were examined: scanning repeatability and image homogeneity, the impact of image processing on data processing in coincidence tests, and irradiation conditions—monitor units per radiation beam and irradiation field are selected. Optimal conditions for carrying out the test are chosen: (i) the multi-leaf collimator gap should preferably be 5 mm for 2D star shot irradiation, (ii) it is recommended to apply ≥2500–≤5000 MU per beam to obtain a strong signal enabling easy data processing, (iii) Mean filter can be applied to the images to improve calculations. An approach to dosimeter reuse with the goal of reducing costs is presented; the number of reuses is related to the MUs per beam, which, in this study, is about 5–57 for 30,000–2500 MU per beam (four fields). The proposed reusable system was successfully applied to the coincidence tests, confirming its suitability as a new potential quality assurance tool in radiotherapy. Full article
Show Figures

Graphical abstract

12 pages, 6107 KiB  
Article
On the Use of the Fricke-Pluronic F-127 Gel Dosimeter for Radiation Isocenter Testing of a Medical Linear Accelerator
by Michał Piotrowski, Piotr Maras and Marek Kozicki
Materials 2024, 17(7), 1521; https://doi.org/10.3390/ma17071521 - 27 Mar 2024
Cited by 1 | Viewed by 568
Abstract
This work presents a Fricke-XO-Pluronic F-127 2D radiochromic dosimeter with a flat-bed scanner for 2D reading and a dedicated data processing software package as a tool for performing coincidence testing of the radiation and mechanical isocenter of a medical accelerator. The optimal irradiation [...] Read more.
This work presents a Fricke-XO-Pluronic F-127 2D radiochromic dosimeter with a flat-bed scanner for 2D reading and a dedicated data processing software package as a tool for performing coincidence testing of the radiation and mechanical isocenter of a medical accelerator. The optimal irradiation parameters were determined as follows: monitor units per beam and multi-leaf collimator gap, which are ≤750–≤2500 MU and 2–5 mm, respectively, for a cuboidal container with dimensions of 12 × 12 × 0.3 cm3. Despite the diffusion of Fe3+ ions occurring during irradiation, 2D reading can be performed at least 3 h after irradiation, without affecting the calculation performance of the coincidence test. The test was successfully performed for various irradiation settings. Overall, the Fricke-XO-Pluronic F-127 dosimeter has proven to be a potential tool for the coincidence testing of medical accelerators. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

13 pages, 3706 KiB  
Article
A Multi-Point Optical Fibre Sensor for Proton Therapy
by Crystal Penner, Samuel Usherovich, Sophia Andru, Camille Bélanger-Champagne, Cheryl Duzenli, Boris Stoeber and Cornelia Hoehr
Electronics 2024, 13(6), 1118; https://doi.org/10.3390/electronics13061118 - 19 Mar 2024
Cited by 2 | Viewed by 827
Abstract
As the technology to deliver precise and very high radiotherapeutic doses with narrow margins grows to better serve patients with complex radiotherapeutic needs, so does the need for sensors and sensor systems that can reliably deliver multi-point dose monitoring and dosimetry for enhanced [...] Read more.
As the technology to deliver precise and very high radiotherapeutic doses with narrow margins grows to better serve patients with complex radiotherapeutic needs, so does the need for sensors and sensor systems that can reliably deliver multi-point dose monitoring and dosimetry for enhanced safety and access. To address this need, we investigated a novel five-point scintillator system for simultaneously sampling points across a 74 MeV proton beam with a Hamamatsu 16-channel MPPC array. We studied the response across beam widths from 25 mm down to 5 mm in diameter and in multiple depths to observe beam penumbrae and output factors as well as depth–dose. We found through comparison to ionization chambers and radiochromic film that the array is capable of measurements accurate to within 8% in the centre of proton beams from 5 to 25 mm in diameter, and within 2% at 3.5 cm depth in water. The results from three trials are repeatable after calibration to within <1%. Overall, the five optical fibre sensor system shows promise as a fast, multipoint relative dosimetry system. Full article
(This article belongs to the Special Issue Applications of Optical Fiber Sensors)
Show Figures

Figure 1

20 pages, 5072 KiB  
Article
Characterization of Radiation Shielding Capabilities of High Concentration PLA-W Composite for 3D Printing of Radiation Therapy Collimators
by José Velásquez, Melani Fuentealba and Mauricio Santibáñez
Polymers 2024, 16(6), 769; https://doi.org/10.3390/polym16060769 - 11 Mar 2024
Viewed by 925
Abstract
This work evaluates the radiation shielding capabilities of the PLA-W composite for MV energy photons emitted by a linear accelerator and the feasibility of manufacturing a clinically-used collimator grid in spatially fractionated radiotherapy (SFRT) using the material extrusion (MEX) 3D printing technique. The [...] Read more.
This work evaluates the radiation shielding capabilities of the PLA-W composite for MV energy photons emitted by a linear accelerator and the feasibility of manufacturing a clinically-used collimator grid in spatially fractionated radiotherapy (SFRT) using the material extrusion (MEX) 3D printing technique. The PLA-W filament used has a W concentration of 93% w/w and a green density of 7.51 g/cm3, characteristics that make it suitable for this purpose. Relevant parameters such as the density and homogeneity distribution of W in the manufactured samples determine the mass attenuation coefficient, directly affecting the radiation shielding capacities, so different printing parameters were evaluated, such as layer height, deposition speed, nozzle temperature, and infill, to improve the protection performance of the samples. Additionally, physical and mechanical tests were conducted to ensure structural stability and spatial variability over time, which are critical to ensure precise spatial modulation of radiation. Finally, a complete collimator grid measuring 9.3 × 9.3 × 7.1 cm3 (consisting of 39 conical collimators with a diameter of 0.92 cm and center-to-center spacing of 1.42 cm) was manufactured and experimentally evaluated on a clinical linear accelerator to measure the radiation shielding and dosimetric parameters such as mass attenuation coefficient, half-value layer (HVL), dosimetric collimator field size, and inter-collimator transmission using radiochromic films and 2D diode array detectors, obtaining values of 0.04692 cm2/g, 2.138 cm, 1.40 cm, and 15.6%, respectively, for the parameters in the study. This shows the viability of constructing a clinically-used collimator grid through 3D printing. Full article
Show Figures

Graphical abstract

17 pages, 7787 KiB  
Article
Flexible Cotton Fabric-Based Ionizing Radiation Dosimeter for 2D Dose Distribution Measurements over a Wide Dose Range at High Dose Rates
by Marek Kozicki, Elżbieta Sąsiadek-Andrzejczak, Radosław Wach and Piotr Maras
Int. J. Mol. Sci. 2024, 25(5), 2916; https://doi.org/10.3390/ijms25052916 - 2 Mar 2024
Viewed by 1069
Abstract
This work presents an ecological, flexible 2D radiochromic dosimeter for measuring ionizing radiation in the kilogray dose range. Cotton woven fabric made of cellulose was volume-modified with nitrotetrazolium blue chloride as a radiation-sensitive compound. Its features include a color change during exposure from [...] Read more.
This work presents an ecological, flexible 2D radiochromic dosimeter for measuring ionizing radiation in the kilogray dose range. Cotton woven fabric made of cellulose was volume-modified with nitrotetrazolium blue chloride as a radiation-sensitive compound. Its features include a color change during exposure from yellowish to purple-brown and flexibility that allows it to adapt to various shapes. It was found that (i) the dose response is up to ~80 kGy, (ii) it is independent of the dose rate for 1.1–73.1 kGy/min, (iii) it can be measured in 2D using a flatbed scanner, (iv) the acquired images can be filtered using a mean filter, which improves its dose resolution, (v) the dose resolution is −0.07 to −0.4 kGy for ~0.6 to ~75.7 kGy for filtered images, and (vi) two linear dose subranges can be distinguished: ~0.6 to ~7.6 kGy and ~9.9 to ~62.0 kGy. The dosimeter combined with flatbed scanner reading and data processing using dedicated software packages constitutes a comprehensive system for measuring dose distributions for objects with complex shapes. Full article
Show Figures

Figure 1

14 pages, 2650 KiB  
Article
An Optimized Method for Evaluating the Potential Gd-Nanoparticle Dose Enhancement Produced by Electronic Brachytherapy
by Melani Fuentealba, Alejandro Ferreira, Apolo Salgado, Christopher Vergara, Sergio Díez and Mauricio Santibáñez
Nanomaterials 2024, 14(5), 430; https://doi.org/10.3390/nano14050430 - 27 Feb 2024
Viewed by 836
Abstract
This work reports an optimized method to experimentally quantify the Gd-nanoparticle dose enhancement generated by electronic brachytherapy. The dose enhancement was evaluated considering energy beams of 50 kVp and 70 kVp, determining the Gd-nanoparticle concentration ranges that would optimize the process for each [...] Read more.
This work reports an optimized method to experimentally quantify the Gd-nanoparticle dose enhancement generated by electronic brachytherapy. The dose enhancement was evaluated considering energy beams of 50 kVp and 70 kVp, determining the Gd-nanoparticle concentration ranges that would optimize the process for each energy. The evaluation was performed using delaminated radiochromic films and a Poly(methyl methacrylate) (PMMA) phantom covered on one side by a thin 2.5 μm Mylar filter acting as an interface between the region with Gd suspension and the radiosensitive film substrate. The results for the 70 kVp beam quality showed dose increments of 6±6%, 22±7%, and 9±7% at different concentrations of 10, 20, and 30 mg/mL, respectively, verifying the competitive mechanisms of enhancement and attenuation. For the 50 kVp beam quality, no increase in dose was recorded for the concentrations studied, indicating that the major contribution to enhancement is from the K-edge interaction. In order to separate the contributions of attenuation and enhancement to the total dose, measurements were replicated with a 12 μm Mylar filter, obtaining a dose enhancement attributable to the K-edge of 29±7% and 34±7% at 20 and 30 mg/mL, respectively, evidencing a significant additional dose proportional to the Gd concentration. Full article
Show Figures

Figure 1

15 pages, 4519 KiB  
Article
Proof-of-Principle of Absolute Dosimetry Using an Absorbed Dose Portable Calorimeter with Laser-Driven Proton Beams
by Sean McCallum, Nigel Lee, Giuliana Milluzzo, Aodhan McIlvenny, Marco Borghesi, Anna Subiel and Francesco Romano
Appl. Sci. 2023, 13(21), 11894; https://doi.org/10.3390/app132111894 - 30 Oct 2023
Cited by 1 | Viewed by 973
Abstract
Charged particle beams driven to ultra-high dose rates (UHDRs) have been shown to offer potential benefits for future clinical applications, particularly in the reduction of normal-tissue toxicity. Studies of the so-called FLASH effect have shown promise, generating huge interest in high dose rate [...] Read more.
Charged particle beams driven to ultra-high dose rates (UHDRs) have been shown to offer potential benefits for future clinical applications, particularly in the reduction of normal-tissue toxicity. Studies of the so-called FLASH effect have shown promise, generating huge interest in high dose rate radiation studies. With laser-driven proton beams, where the duration of the proton burst delivered to a sample can be as short as hundreds of picoseconds, the instantaneous dose rates are several orders of magnitude higher than those used for conventional radiotherapy. The dosimetry of these beam modalities is not trivial, with conventional active detectors, such as ionisation chambers, experiencing saturation effects making them unusable at the extremely high dose rates. Calorimeters, measuring the radiation-induced temperature rise in an absorber, offer an ideal candidate for the dosimetry of UHDR beams. However, their application in the measurement of laser-driven UHDR beams has so far not been trialled, and their effective suitability to work with the quasi-instantaneous and inhomogeneous dose deposition patterns and the harsh environment of a laser-plasma experiment has not been tested. The measurement of the absorbed dose of laser-driven proton beams was conducted in a first-of-its-kind investigation, employing the VULCAN-PW laser system of the Central Laser Facility (CLF) at the Rutherford Appleton Laboratory (RAL), using a small-body portable graphite calorimeter (SPGC) developed at the National Physical Laboratory (NPL) and radiochromic films. A small number of shots were recorded, with the corresponding absorbed dose measurements resulting from the induced temperature rise. The effect of the electromagnetic pulse (EMP) generated during laser–target interaction was assessed on the system, showing no significant effects on the derived signal-to-noise ratio. These proof-of-principle tests highlight the ability of calorimetry techniques to measure the absorbed dose for laser-driven proton beams. Full article
Show Figures

Figure 1

13 pages, 9267 KiB  
Article
Capsule Dosimeters for Ultraviolet Radiation Measurements on Coral Reefs and in Seawater
by Elżbieta Sąsiadek-Andrzejczak, Malwina Jaszczak and Marek Kozicki
Materials 2023, 16(17), 5734; https://doi.org/10.3390/ma16175734 - 22 Aug 2023
Cited by 1 | Viewed by 616
Abstract
This work reports on the new chemical dosimeters for UV radiation dose measurements on coral reefs and in seawater. The proposed dosimeters can measure the actual dose of UV radiation, which consists of 95% UVA and 5% UVB radiation, unlike the currently-used radiometers [...] Read more.
This work reports on the new chemical dosimeters for UV radiation dose measurements on coral reefs and in seawater. The proposed dosimeters can measure the actual dose of UV radiation, which consists of 95% UVA and 5% UVB radiation, unlike the currently-used radiometers in marine and ocean waters that measure the dose of UVA and UVB radiation separately. The dosimeters are composed of water, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127) as a gel matrix, and 2,3,5-triphenyltetrazolium chloride (TTC) as a UV radiation-sensitive compound. In the work, the dosimeters were characterised in terms of their response to the dose of UV radiation depending on the TTC concentration and the irradiation and storage conditions of the dosimeters. The stability of the dosimeters over time was also examined. The obtained results indicate that the TTC-Pluronic F-127 dosimeters can be used to measure absorbed doses of UV radiation in the saltwater environment. The developed dosimeters with a concentration of 0.1% TTC can be used up to 5 J/cm2, which predisposes them to UV radiation measurements at a depth of more than 10 m in sea and ocean waters in 10-min intervals during all months throughout the year. Full article
Show Figures

Figure 1

16 pages, 1760 KiB  
Review
FLASH Radiotherapy and the Use of Radiation Dosimeters
by Sarkar Siddique, Harry E. Ruda and James C. L. Chow
Cancers 2023, 15(15), 3883; https://doi.org/10.3390/cancers15153883 - 30 Jul 2023
Cited by 8 | Viewed by 2627
Abstract
Radiotherapy (RT) using ultra-high dose rate (UHDR) radiation, known as FLASH RT, has shown promising results in reducing normal tissue toxicity while maintaining tumor control. However, implementing FLASH RT in clinical settings presents technical challenges, including limited depth penetration and complex treatment planning. [...] Read more.
Radiotherapy (RT) using ultra-high dose rate (UHDR) radiation, known as FLASH RT, has shown promising results in reducing normal tissue toxicity while maintaining tumor control. However, implementing FLASH RT in clinical settings presents technical challenges, including limited depth penetration and complex treatment planning. Monte Carlo (MC) simulation is a valuable tool for dose calculation in RT and has been investigated for optimizing FLASH RT. Various MC codes, such as EGSnrc, DOSXYZnrc, and Geant4, have been used to simulate dose distributions and optimize treatment plans. Accurate dosimetry is essential for FLASH RT, and radiation detectors play a crucial role in measuring dose delivery. Solid-state detectors, including diamond detectors such as microDiamond, have demonstrated linear responses and good agreement with reference detectors in UHDR and ultra-high dose per pulse (UHDPP) ranges. Ionization chambers are commonly used for dose measurement, and advancements have been made to address their response nonlinearities at UHDPP. Studies have proposed new calculation methods and empirical models for ion recombination in ionization chambers to improve their accuracy in FLASH RT. Additionally, strip-segmented ionization chamber arrays have shown potential for the experimental measurement of dose rate distribution in proton pencil beam scanning. Radiochromic films, such as GafchromicTM EBT3, have been used for absolute dose measurement and to validate MC simulation results in high-energy X-rays, triggering the FLASH effect. These films have been utilized to characterize ionization chambers and measure off-axis and depth dose distributions in FLASH RT. In conclusion, MC simulation provides accurate dose calculation and optimization for FLASH RT, while radiation detectors, including diamond detectors, ionization chambers, and radiochromic films, offer valuable tools for dosimetry in UHDR environments. Further research is needed to refine treatment planning techniques and improve detector performance to facilitate the widespread implementation of FLASH RT, potentially revolutionizing cancer treatment. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies)
Show Figures

Figure 1

13 pages, 2410 KiB  
Article
Clinical Characterization of a Table Mounted Range Shifter Board for Synchrotron-Based Intensity Modulated Proton Therapy for Pediatric Craniospinal Irradiation
by William T. Hrinivich, Heng Li, Anh Tran, Sahaja Acharya, Matthew M. Ladra and Khadija Sheikh
Cancers 2023, 15(11), 2882; https://doi.org/10.3390/cancers15112882 - 23 May 2023
Viewed by 1279
Abstract
Purpose: To report our design, manufacturing, commissioning and initial clinical experience with a table-mounted range shifter board (RSB) intended to replace the machine-mounted range shifter (MRS) in a synchrotron-based pencil beam scanning (PBS) system to reduce penumbra and normal tissue dose for [...] Read more.
Purpose: To report our design, manufacturing, commissioning and initial clinical experience with a table-mounted range shifter board (RSB) intended to replace the machine-mounted range shifter (MRS) in a synchrotron-based pencil beam scanning (PBS) system to reduce penumbra and normal tissue dose for image-guided pediatric craniospinal irradiation (CSI). Methods: A custom RSB was designed and manufactured from a 3.5 cm thick slab of polymethyl methacrylate (PMMA) to be placed directly under patients, on top of our existing couch top. The relative linear stopping power (RLSP) of the RSB was measured using a multi-layer ionization chamber, and output constancy was measured using an ion chamber. End-to-end tests were performed using the MRS and RSB approaches using an anthropomorphic phantom and radiochromic film measurements. Cone beam CT (CBCT) and 2D planar kV X-ray image quality were compared with and without the RSB present using image quality phantoms. CSI plans were produced using MRS and RSB approaches for two retrospective pediatric patients, and the resultant normal tissue doses were compared. Results: The RLSP of the RSB was found to be 1.163 and provided computed penumbra of 6.9 mm in the phantom compared to 11.8 mm using the MRS. Phantom measurements using the RSB demonstrated errors in output constancy, range, and penumbra of 0.3%, −0.8%, and 0.6 mm, respectively. The RSB reduced mean kidney and lung dose compared to the MRS by 57.7% and 46.3%, respectively. The RSB decreased mean CBCT image intensities by 86.8 HU but did not significantly impact CBCT or kV spatial resolution providing acceptable image quality for patient setup. Conclusions: A custom RSB for pediatric proton CSI was designed, manufactured, modeled in our TPS, and found to significantly reduce lateral proton beam penumbra compared to a standard MRS while maintaining CBCT and kV image-quality and is in routine use at our center. Full article
(This article belongs to the Special Issue Proton Therapy for Cancer in the Era of Precision Medicine)
Show Figures

Figure 1

10 pages, 2500 KiB  
Article
Application of a Portable Colorimeter for Reading a Radiochromic Film for On-Site Dosimetry
by Hiroshi Yasuda and Hikaru Yoshida
Appl. Sci. 2023, 13(8), 4761; https://doi.org/10.3390/app13084761 - 10 Apr 2023
Cited by 4 | Viewed by 1795
Abstract
Radiochromic films have widely been used for quality assurance (QA) in radiation therapy and have many advantageous features such as self-developing visible coloration, wide dose range and easiness to handle. These features have a good potential for application to other fields associated with [...] Read more.
Radiochromic films have widely been used for quality assurance (QA) in radiation therapy and have many advantageous features such as self-developing visible coloration, wide dose range and easiness to handle. These features have a good potential for application to other fields associated with high-dose radiation exposure, e.g., verification of various radiation sources used in industry and research, occupational radiation monitoring as a preparedness for radiological emergencies. One of the issues in such applications is the elaborate process of acquisition and analyses of the color image using a flatbed scanner and image processing software, which is desirably to be improved for achieving a practical on-site dosimetry. In the present study, a simple method for reading a radiochromic film by using a portable colorimeter (nix pro 2; abbreviated here “Nix”) was proposed and its feasibility for diagnostic X-rays was tested with a commercial radiochromic film (Gafchromic EBT-XD). It was found that the color intensities of red and green components of EBT-XD were successfully measured by Nix over a wide dose range up to 40 Gy. Though some angle dependence was observed, this error could be well averted by careful attention to the film direction in a reading process. According to these findings, it is expected that the proposed on-site dosimetry method of combining a radiochromic film and a portable colorimeter will be practically utilized in various occasions. Full article
Show Figures

Figure 1

10 pages, 596 KiB  
Article
Determination of the Absorbed Dose in Water for Small Photon Beams Using Micro-TLDs of LiF:Mg,Ti (Pilot Audit Proposal)
by Olivia A. García-Garduño, José M. Lárraga-Gutiérrez, Salvador Peña-Jiménez and Isabel Gamboa-deBuen
Appl. Sci. 2023, 13(7), 4111; https://doi.org/10.3390/app13074111 - 23 Mar 2023
Cited by 1 | Viewed by 1268
Abstract
Background: Small-field dosimetry remains an open challenge globally. Thus, it is crucial to consider adequate reference codes of practice for the performance of dosimetry. Furthermore, as part of good clinical practice, the implementation of new codes of practice implies the development of a [...] Read more.
Background: Small-field dosimetry remains an open challenge globally. Thus, it is crucial to consider adequate reference codes of practice for the performance of dosimetry. Furthermore, as part of good clinical practice, the implementation of new codes of practice implies the development of a dosimetry audit program. In this work, a pilot dosimetric audit protocol is established for measuring the absolute dose in water for small fields using micro-TLDs LiF:Mg,Ti dosimeters. Methods: The dosimeters were irradiated with a 6 MV X-ray beam in a linear accelerator. The TLDs were calibrated between 0.5 and 3 Gy for different field sizes. For audit, the TLDs were irradiated at 2 Gy for different circular field sizes. The proposed protocol consists of five TLD dosimeters forming a cross with a marked radiochromic film to identify the position of the central dosimeter during irradiation. Only the dosimeter measurement in the center of the field is used. Results: It was found that the percentage difference between the measured dose and the prescribed dose (2 Gy) for irradiation in circular fields is less than 3%. Conclusions: A pilot dosimetric audit was carried out using the proposed protocol over a linear accelerator using small circular collimator photon beams. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

9 pages, 1503 KiB  
Article
Investigation of Radiochromic Film Use for Source Position Verification through a LINAC On-Board Imager (OBI)
by Songül Çavdar Karaçam, Duygu Tunçman, Ghada ALMisned, Antoaneta Ene and Huseyin Ozan Tekin
Medicina 2023, 59(3), 628; https://doi.org/10.3390/medicina59030628 - 21 Mar 2023
Cited by 1 | Viewed by 1830
Abstract
Background and Objectives: Quality assurance is an integral part of brachytherapy. Traditionally, radiographic films have been used for source position verification, however, in many clinics, computerized tomography simulators have replaced conventional simulators, and computerized radiography systems have replaced radiographic film processing units. With [...] Read more.
Background and Objectives: Quality assurance is an integral part of brachytherapy. Traditionally, radiographic films have been used for source position verification, however, in many clinics, computerized tomography simulators have replaced conventional simulators, and computerized radiography systems have replaced radiographic film processing units. With these advances, the problem of controlling source position verification without traditional radiographic films and conventional simulators has appeared. Materials and Methods: In this study, we investigated an alternative method for source position verification for brachytherapy applications. Source positions were evaluated using Gafchromic™ RTQA2 and EBT3 film and visually compared to exposed RTQA radiochromic film when using a Nucletron Oldelft Simulix HP conventional simulator and a Gammamed 12-i brachytherapy device for performance evaluation. Gafchromic film autoradiography was performed with a linear accelerator (LINAC) on-board imager (OBI). Radiochromic films are very suitable for evaluation by visual inspection with a LINAC OBI. Results: The results showed that this type of low-cost, easy-to-find material can be used for verification purposes under clinical conditions. Conclusions: It can be concluded that source-position quality assurance may be performed through a LINAC OBI device. Full article
Show Figures

Figure 1

18 pages, 2678 KiB  
Article
Dosimetric Characterization of DSF/NaOH/IA-PAE/R. spp. Phantom Material for Radiation Therapy
by Damilola Oluwafemi Samson, Ahmad Shukri, Nurul Ab. Aziz Hashikin, Siti Hajar Zuber, Mohd Zahri Abdul Aziz, Rokiah Hashim, Mohd Fahmi Mohd Yusof, Nor Ain Rabaiee and Sylvester Jande Gemanam
Polymers 2023, 15(1), 244; https://doi.org/10.3390/polym15010244 - 3 Jan 2023
Viewed by 1829
Abstract
Background: Different compositions of DSF/NaOH/IA-PAE/R. spp. composite particleboard phantoms were constructed. Methods: Photon attenuation characteristics were ascertained using gamma rays from 137Cs and 60Co. Absorbed doses at the location of an ionization chamber and Gafchromic EBT3 radiochromic films were calculated [...] Read more.
Background: Different compositions of DSF/NaOH/IA-PAE/R. spp. composite particleboard phantoms were constructed. Methods: Photon attenuation characteristics were ascertained using gamma rays from 137Cs and 60Co. Absorbed doses at the location of an ionization chamber and Gafchromic EBT3 radiochromic films were calculated for high-energy photons (6 and 10 MV) and electrons (6, 9, 12, and 15 MeV). Results: The calculated TPR20,10 values indicate that the percentage discrepancy for 6 and 10 MV was in the range of 0.29–0.72% and 0.26–0.65%. It was also found that the relative difference in the dmax to water and solid water phantoms was between 1.08–1.28% and 5.42–6.70%. The discrepancies in the determination of PDD curves with 6, 9, 12, and 15 MeV, and those of water and solid water phantoms, ranged from 2.40–4.84%. Comparable results were found using the EBT3 films with variations of 2.0–7.0% for 6 and 10 MV photons. Likewise, the discrepancies for 6, 9, 12, and 15 MeV electrons were within an acceptable range of 2.0–4.5%. Conclusions: On the basis of these findings, the DSF/NaOH/IA-PAE/R. spp. particleboard phantoms with 15 wt% IA-PAE addition level can be effectively used as alternative tissue-equivalent phantom material for radiation therapy applications. Full article
(This article belongs to the Special Issue Polymers Synthesis and Characterization)
Show Figures

Graphical abstract

Back to TopTop