Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (972)

Search Parameters:
Keywords = ribosomal protein genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5648 KiB  
Communication
Complete Mitochondrial Genomes of the Leptocircini Species Iphiclides podalirius and I. podalirinus (Lepidoptera: Papilionidae)
by Yue Pan, Xin Zhang, Adam M. Cotton and Shao-Ji Hu
Diversity 2024, 16(7), 392; https://doi.org/10.3390/d16070392 - 9 Jul 2024
Viewed by 181
Abstract
The complete mitochondrial genomes of two Iphiclides species, namely I. podalirius and I. podalirinus, were sequenced, assembled, and reported in this article. Both genomes comprise 37 genes, with 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and two ribosomal RNA (rRNA) genes. [...] Read more.
The complete mitochondrial genomes of two Iphiclides species, namely I. podalirius and I. podalirinus, were sequenced, assembled, and reported in this article. Both genomes comprise 37 genes, with 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and two ribosomal RNA (rRNA) genes. The gene orders and alignments agree with the reported mitogenomes of Leptocircini butterflies, while the start codon for the COX1 gene in I. podalirinus is CGA instead of the commonly seen ATN type. Codon preference shows that methionine and tryptophan are the poorest, while arginine, leucine, and serine are the richest. Phylogenetic analysis using Bayesian Inference shows both Iphiclides species are sister to the genus Lamproptera and are basal to all remaining Leptocircini species. The Kimura 2-parameter (K2P) distances of I. podalirinus from I. podalirius exceed 5%, demonstrating its solid species status. The K2P distance between the North African feisthamelii and podalirius exceeds 2%, indicating the reasonable elevation of I. feisthamelii to the full specific level as its type locality is Algeria. Future research is required to tackle the relationship between the Iberian feisthamelii and podalirius using more evidence. Full article
(This article belongs to the Section Animal Diversity)
13 pages, 7925 KiB  
Article
Information Gradient among Nucleotide Sequences of Essential RNAs from an Evolutionary Perspective
by Houssem Ben Khalfallah, Mariem Jelassi, Hajar Rissaoui, Mohtadi Barchouchi, Clément Baraille, Joël Gardes and Jacques Demongeot
Int. J. Mol. Sci. 2024, 25(14), 7521; https://doi.org/10.3390/ijms25147521 (registering DOI) - 9 Jul 2024
Viewed by 216
Abstract
We hypothesize that the first ancestral “protocell” molecular structures, i.e., the first RNAs and peptides that gradually transformed into real cells once the Earth had cooled sufficiently for organic molecules to appear, have left traces in the RNAs and the genes in present [...] Read more.
We hypothesize that the first ancestral “protocell” molecular structures, i.e., the first RNAs and peptides that gradually transformed into real cells once the Earth had cooled sufficiently for organic molecules to appear, have left traces in the RNAs and the genes in present cells. We propose a circular RNA that could have been one of these ancestral structures whose vestigial pentameric subsequences would mark the evolution from this key moment when the protocells began to join with living organisms. In particular, we propose that, in present RNAs (ribosomal or messenger), which play an important role in the metabolism of current cells, we look for traces of the proposed primitive structure in the form of pentamers (or longer fragments) that belong to their nucleotide sequence. The result obtained can be summarized in the existence of a gradient of occurrence of such pentamers, with a high frequency for the most vital functions (protein synthesis, nucleic synthesis, cell respiration, etc.). This gradient is also visible between organisms, from the oldest (Archaea) to the most recent (Eukaryotes) in the evolution of species. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 1860 KiB  
Article
Chromosome-Scale Genome Assembly Provides Insights into Fresh Pine Wood Decay Strategies of the Wolfiporia hoelen
by Chi Yang, Donglai Xiao, Xiaoling Jiang, Yaru Li, Xiaoyu Liu, Hui Lin, Chuansen Liu and Lu Ma
Horticulturae 2024, 10(7), 703; https://doi.org/10.3390/horticulturae10070703 - 3 Jul 2024
Viewed by 416
Abstract
The sclerotia of Wolfiporia hoelen (Fr.) Y.C. Dai & V. Papp is an important traditional Chinese medicine with diverse pharmacological properties. This study utilized a combination of PacBio Long-Read Sequencing, Illumina Short-Read Sequencing, and Hi-C Sequencing to generate a high-quality chromosome-level genome assembly [...] Read more.
The sclerotia of Wolfiporia hoelen (Fr.) Y.C. Dai & V. Papp is an important traditional Chinese medicine with diverse pharmacological properties. This study utilized a combination of PacBio Long-Read Sequencing, Illumina Short-Read Sequencing, and Hi-C Sequencing to generate a high-quality chromosome-level genome assembly of a W. hoelen strain Minling A5. There were 112 contigs in the genome, with 62.95 Mb in total length and 4.21 Mb in length for the contig N50. The average GC content was 51.89%. Based on Hi-C data, we corrected the CCS data and scaffolded them into 14 pseudo-chromosomes. The genome contained 44.37% repetitive sequences and 12,670 protein-coding genes, 86.53% (10,963) of which could be functionally annotated in at least one of the KOG, GO, Pfam, Swissprot, TrEMBL, NR, and KEGG databases. In addition, 240 transfer RNAs, 97 ribosomal RNAs, and 103 other non-coding RNAs were identified in the W. hoelen genome. A total of 755 pseudogenes were also identified, with an average length of 2665.51 bp. Further, there were 398, 100, 2837, 519, and 2068 genes annotated by CAZymes, TCDB, PHI, P450, and DFVF databases, respectively. One notable attribute of W. hoelen is its capacity to thrive in a substrate of fresh pine sawdust. Through an analysis of the growth on various pure wood sawdust culture media, we found that the growth of W. hoelen and Sparassis latifolia on pine sawdust was similar to that on broad-leaved wood sawdust, while the growth of Pleurotus ostreatus, P. eryngii, and Cyclocybe aegerita was slower than that on broad-leaved wood sawdust. By the functional annotation analysis of orthogroups in these five mushroom-forming fungi, it was determined that 645 orthogroups were specifically common in W. hoelen and S. latifolia. The genes in these specific orthogroups were significantly enriched in 12 pathways, including steroid biosynthesis, biosynthesis of antibiotics, and tyrosine metabolism. The high-quality genome and comparative genome analysis results significantly contribute to advancing our foundational knowledge of W. hoelen biology, while also offering valuable insights for the development of innovative biotechnological approaches aimed at enhancing the efficient and sustainable utilization of Pinus. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

25 pages, 2652 KiB  
Review
SnoRNAs: Exploring Their Implication in Human Diseases
by Waseem Chauhan, Sudharshan SJ, Sweta Kafle and Rahima Zennadi
Int. J. Mol. Sci. 2024, 25(13), 7202; https://doi.org/10.3390/ijms25137202 - 29 Jun 2024
Viewed by 333
Abstract
Small nucleolar RNAs (snoRNAs) are earning increasing attention from research communities due to their critical role in the post-transcriptional modification of various RNAs. These snoRNAs, along with their associated proteins, are crucial in regulating the expression of a vast array of genes in [...] Read more.
Small nucleolar RNAs (snoRNAs) are earning increasing attention from research communities due to their critical role in the post-transcriptional modification of various RNAs. These snoRNAs, along with their associated proteins, are crucial in regulating the expression of a vast array of genes in different human diseases. Primarily, snoRNAs facilitate modifications such as 2′-O-methylation, N-4-acetylation, and pseudouridylation, which impact not only ribosomal RNA (rRNA) and their synthesis but also different RNAs. Functionally, snoRNAs bind with core proteins to form small nucleolar ribonucleoproteins (snoRNPs). These snoRNAs then direct the protein complex to specific sites on target RNA molecules where modifications are necessary for either standard cellular operations or the regulation of pathological mechanisms. At these targeted sites, the proteins coupled with snoRNPs perform the modification processes that are vital for controlling cellular functions. The unique characteristics of snoRNAs and their involvement in various non-metabolic and metabolic diseases highlight their potential as therapeutic targets. Moreover, the precise targeting capability of snoRNAs might be harnessed as a molecular tool to therapeutically address various disease conditions. This review delves into the role of snoRNAs in health and disease and explores the broad potential of these snoRNAs as therapeutic agents in human pathologies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 4088 KiB  
Article
Impaired Mitochondrial Energy Metabolism Regulated by p70S6K: A Putative Pathological Feature in Alzheimer’s Disease
by Wenyu Gu, Xinli Cong, Yechun Pei, Nuela Manka’a Che Ajuyo, Yi Min and Dayong Wang
Metabolites 2024, 14(7), 369; https://doi.org/10.3390/metabo14070369 - 29 Jun 2024
Viewed by 360
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease. Mitochondrial energy metabolism and p70 ribosomal protein S6 kinase (p70S6K) play significant roles in AD pathology. However, the potential relationship between them is unclear. In this study, bioinformatics methods were initially applied to analyze the transcriptomic [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disease. Mitochondrial energy metabolism and p70 ribosomal protein S6 kinase (p70S6K) play significant roles in AD pathology. However, the potential relationship between them is unclear. In this study, bioinformatics methods were initially applied to analyze the transcriptomic data in the CA1 and the primary visual cortex of patients with AD and Aβ42-treated SH-SY5Y cells. By applying secreted Aβ42 and p70S6K gene silencing in cells, we explored disorders in mitochondrial function and the regulatory roles of p70S6K by flow cytometry, laser scanning confocal microscopy, high-performance liquid chromatography, Western blotting, and quantitative reverse transcription PCR. The study reveals that impaired mitochondrial energy metabolism is a potential pathological feature of AD and that p70S6K gene silencing reversed most of the changes induced by Aβ42, such as the activities of the electron transport chain complexes I and III, as well as ATP synthase, ATP production, generation of reactive oxygen species, mitochondrial membrane potential, and phosphorylation of AMPK, PINK1, and Parkin, all of which are required for mitochondria to function properly in the cell. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

24 pages, 4889 KiB  
Article
Respiratory SARS-CoV-2 Infection Causes Skeletal Muscle Atrophy and Long-Lasting Energy Metabolism Suppression
by Sachiko T. Homma, Xingyu Wang, Justin J. Frere, Adam C. Gower, Jingsong Zhou, Jean K. Lim, Benjamin R. tenOever and Lan Zhou
Biomedicines 2024, 12(7), 1443; https://doi.org/10.3390/biomedicines12071443 - 28 Jun 2024
Viewed by 422
Abstract
Muscle fatigue represents the most prevalent symptom of long-term COVID, with elusive pathogenic mechanisms. We performed a longitudinal study to characterize histopathological and transcriptional changes in skeletal muscle in a hamster model of respiratory SARS-CoV-2 infection and compared them with influenza A virus [...] Read more.
Muscle fatigue represents the most prevalent symptom of long-term COVID, with elusive pathogenic mechanisms. We performed a longitudinal study to characterize histopathological and transcriptional changes in skeletal muscle in a hamster model of respiratory SARS-CoV-2 infection and compared them with influenza A virus (IAV) and mock infections. Histopathological and bulk RNA sequencing analyses of leg muscles derived from infected animals at days 3, 30, and 60 post-infection showed no direct viral invasion but myofiber atrophy in the SARS-CoV-2 group, which was accompanied by persistent downregulation of the genes related to myofibers, ribosomal proteins, fatty acid β-oxidation, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation complexes. While both SARS-CoV-2 and IAV infections induced acute and transient type I and II interferon responses in muscle, only the SARS-CoV-2 infection upregulated TNF-α/NF-κB but not IL-6 signaling in muscle. Treatment of C2C12 myotubes, a skeletal muscle cell line, with combined IFN-γ and TNF-α but not with IFN-γ or TNF-α alone markedly impaired mitochondrial function. We conclude that a respiratory SARS-CoV-2 infection can cause myofiber atrophy and persistent energy metabolism suppression without direct viral invasion. The effects may be induced by the combined systemic interferon and TNF-α responses at the acute phase and may contribute to post-COVID-19 persistent muscle fatigue. Full article
13 pages, 2643 KiB  
Article
Inference of Essential Genes of the Parasite Haemonchus contortus via Machine Learning
by Túlio L. Campos, Pasi K. Korhonen, Neil D. Young, Tao Wang, Jiangning Song, Richard Marhoefer, Bill C. H. Chang, Paul M. Selzer and Robin B. Gasser
Int. J. Mol. Sci. 2024, 25(13), 7015; https://doi.org/10.3390/ijms25137015 - 27 Jun 2024
Viewed by 661
Abstract
Over the years, comprehensive explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have contributed substantially to our understanding of complex biological processes and pathways in multicellular organisms generally. Extensive functional genomic–phenomic, genomic, transcriptomic, and proteomic data sets [...] Read more.
Over the years, comprehensive explorations of the model organisms Caenorhabditis elegans (elegant worm) and Drosophila melanogaster (vinegar fly) have contributed substantially to our understanding of complex biological processes and pathways in multicellular organisms generally. Extensive functional genomic–phenomic, genomic, transcriptomic, and proteomic data sets have enabled the discovery and characterisation of genes that are crucial for life, called ‘essential genes’. Recently, we investigated the feasibility of inferring essential genes from such data sets using advanced bioinformatics and showed that a machine learning (ML)-based workflow could be used to extract or engineer features from DNA, RNA, protein, and/or cellular data/information to underpin the reliable prediction of essential genes both within and between C. elegans and D. melanogaster. As these are two distantly related species within the Ecdysozoa, we proposed that this ML approach would be particularly well suited for species that are within the same phylum or evolutionary clade. In the present study, we cross-predicted essential genes within the phylum Nematoda (evolutionary clade V)—between C. elegans and the pathogenic parasitic nematode H. contortus—and then ranked and prioritised H. contortus proteins encoded by these genes as intervention (e.g., drug) target candidates. Using strong, validated predictors, we inferred essential genes of H. contortus that are involved predominantly in crucial biological processes/pathways including ribosome biogenesis, translation, RNA binding/processing, and signalling and which are highly transcribed in the germline, somatic gonad precursors, sex myoblasts, vulva cell precursors, various nerve cells, glia, or hypodermis. The findings indicate that this in silico workflow provides a promising avenue to identify and prioritise panels/groups of drug target candidates in parasitic nematodes for experimental validation in vitro and/or in vivo. Full article
(This article belongs to the Special Issue Parasite Biology and Host-Parasite Interactions: 2nd Edition)
Show Figures

Figure 1

27 pages, 7473 KiB  
Article
uL3 Regulates Redox Metabolism and Ferroptosis Sensitivity of p53-Deleted Colorectal Cancer Cells
by Chiara Brignola, Annalisa Pecoraro, Camilla Danisi, Nunzia Iaccarino, Anna Di Porzio, Francesca Romano, Pietro Carotenuto, Giulia Russo and Annapina Russo
Antioxidants 2024, 13(7), 757; https://doi.org/10.3390/antiox13070757 - 22 Jun 2024
Viewed by 355
Abstract
Despite advancements in therapeutic strategies, the development of drug resistance and metastasis remains a serious concern for the efficacy of chemotherapy against colorectal cancer (CRC). We have previously demonstrated that low expression of ribosomal protein uL3 positively correlates with chemoresistance in CRC patients. [...] Read more.
Despite advancements in therapeutic strategies, the development of drug resistance and metastasis remains a serious concern for the efficacy of chemotherapy against colorectal cancer (CRC). We have previously demonstrated that low expression of ribosomal protein uL3 positively correlates with chemoresistance in CRC patients. Here, we demonstrated that the loss of uL3 increased the metastatic capacity of CRC cells in chick embryos. Metabolomic analysis revealed large perturbations in amino acid and glutathione metabolism in resistant uL3-silenced CRC cells, indicating that uL3 silencing dramatically triggered redox metabolic reprogramming. RNA-Seq data revealed a notable dysregulation of 108 genes related to ferroptosis in CRC patients. Solute Carrier Family 7 Member 11 (SLC7A11) is one of the most dysregulated genes; its mRNA stability is negatively regulated by uL3, and its expression is inversely correlated with uL3 levels. Inhibition of SLC7A11 with erastin impaired resistant uL3-silenced CRC cell survival by inducing ferroptosis. Of interest, the combined treatment erastin plus uL3 enhanced the chemotherapeutic sensitivity of uL3-silenced CRC cells to erastin. The antimetastatic potential of the combined strategy was evaluated in chick embryos. Overall, our study sheds light on uL3-mediated chemoresistance and provides evidence of a novel therapeutic approach, erastin plus uL3, to induce ferroptosis, establishing individualized therapy by examining p53, uL3 and SLC7A11 profiles in tumors. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 3702 KiB  
Article
The Complete Chloroplast Genome of an Epiphytic Leafless Orchid, Taeniophyllum complanatum: Comparative Analysis and Phylogenetic Relationships
by Zhuang Zhou, Jinliao Chen, Fei Wang, Xiaopei Wu, Zhongjian Liu, Donghui Peng and Siren Lan
Horticulturae 2024, 10(6), 660; https://doi.org/10.3390/horticulturae10060660 - 20 Jun 2024
Viewed by 382
Abstract
Taeniophyllum is a distinct taxon of epiphytic leafless plants in the subtribe Aeridinae of Orchidaceae. The differences in chloroplast genomes between extremely degraded epiphytic leafless orchids and other leafy orchids, as well as their origins and evolution, raise intriguing questions. Therefore, we report [...] Read more.
Taeniophyllum is a distinct taxon of epiphytic leafless plants in the subtribe Aeridinae of Orchidaceae. The differences in chloroplast genomes between extremely degraded epiphytic leafless orchids and other leafy orchids, as well as their origins and evolution, raise intriguing questions. Therefore, we report the chloroplast genome sequence of Taeniophyllum complanatum, including an extensive comparative analysis with other types of leafless orchids. The chloroplast genome of T. complanatum exhibited a typical quadripartite structure, and its overall structure and gene content were relatively conserved. The entire chloroplast genome was 141,174 bp in length, making it the smallest known chloroplast genome of leafless epiphytic orchids. It encoded a total of 120 genes, including repetitive genes, comprising 74 protein-coding genes, 38 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A phylogenetic analysis was conducted on the chloroplast genomes of 43 species belonging to five subfamilies of Orchidaceae. The results showed that the five subfamilies were monophyly, with nearly all segments having a 100% bootstrap value. T. complanatum and Chiloschista were clustered together as a sister group to Phalaenopsis and occupied the highest position in the Epidendroideae. Phylogenetic analysis suggested that T. complanatum and other leafless orchids within the Orchidaceae evolved independently. This study may provide the foundation for research on phylogenetic and structural diversity in leafless epiphytic orchids, thereby enhancing the resources available for chloroplast genome studies in Orchidaceae. Full article
Show Figures

Figure 1

13 pages, 2682 KiB  
Article
Structure and Phylogenetic Relationships of Scolopacidae Mitogenomes (Charadriiformes: Scolopacidae)
by Quanheng Li, Peiyue Jiang, Mingxuan Li, Jingjing Du, Jianxiang Sun, Nuo Chen, Yu Wu, Qing Chang and Chaochao Hu
Curr. Issues Mol. Biol. 2024, 46(6), 6186-6198; https://doi.org/10.3390/cimb46060369 - 19 Jun 2024
Viewed by 372
Abstract
The family Scolopacidae presents a valuable subject for evolutionary research; however, molecular studies of Scolopacidae are still relatively understudied, and the phylogenetic relationships of certain species remain unclear. In this study, we sequenced and obtained complete mitochondrial DNA (mtDNA) from Actitis hypoleucos and [...] Read more.
The family Scolopacidae presents a valuable subject for evolutionary research; however, molecular studies of Scolopacidae are still relatively understudied, and the phylogenetic relationships of certain species remain unclear. In this study, we sequenced and obtained complete mitochondrial DNA (mtDNA) from Actitis hypoleucos and partial mtDNA from Numenius arquata, Limosa limosa, and Limnodromus semipalmatus. The complete mtDNA contained 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 tRNA genes, and a control region. Scolopacidae contained three types of start codons and five types of stop codons (including one incomplete stop codon, T--). In 13 protein-coding genes, average uncorrected pairwise distances (Aupd) revealed that ATP8 was the least conserved while COX3 had the lowest evolutionary rate. The ratio of Ka/Ks suggested that all PCGs were under purifying selection. Using two methods (maximum likelihood and Bayesian inference) to analyze the phylogenetic relationships of the family Scolopacidae, it was found that the genera Xenus and Actitis were clustered into another sister group, while the genus Phalaropus is more closely related to the genus Tringa. The genera Limnodromus, Gallinago, and Scolopax form a monophyletic group. This study improves our understanding of the evolutionary patterns and phylogenetic relationships of the family Scolopacidae. Full article
(This article belongs to the Special Issue Mitochondrial Genome 2024)
Show Figures

Figure 1

13 pages, 2081 KiB  
Article
Genetic Variation among the Partial Gene Sequences of the Ribosomal Protein Large-Two, the Internal Transcribed Spacer, and the Small Ribosomal Subunit of Blastocystis sp. from Human Fecal Samples
by Guiehdani Villalobos, Eduardo Lopez-Escamilla, Angelica Olivo-Diaz, Mirza Romero-Valdovinos, Arony Martinez, Pablo Maravilla and Fernando Martinez-Hernandez
Microorganisms 2024, 12(6), 1152; https://doi.org/10.3390/microorganisms12061152 - 5 Jun 2024
Viewed by 588
Abstract
In the present study, we compared the genetic variability of fragments from the internal transcribed spacer region (ITS) and the small subunit ribosomal DNA (SSUrDNA) as nuclear markers, in contrast with the ribosomal protein large two (rpl2) loci, placed in [...] Read more.
In the present study, we compared the genetic variability of fragments from the internal transcribed spacer region (ITS) and the small subunit ribosomal DNA (SSUrDNA) as nuclear markers, in contrast with the ribosomal protein large two (rpl2) loci, placed in the mitochondrion-related organelles (MROs) within and among human fecal samples with Blastocystis. Samples were analyzed using polymerase chain reaction (PCR)-sequencing, phylogenies, and genetics of population structure analyses were performed. In total, 96 sequences were analyzed, i.e., 33 of SSUrDNA, 35 of rpl2, and 28 of ITS. Only three subtypes (STs) were identified, i.e., ST1 (11.4%), ST2 (28.6%), and ST3 (60%); in all cases, kappa indexes were 1, meaning a perfect agreement among ST assignations. The topologies of phylogenetic inferences were similar among them, clustering to each ST in its specific cluster; discrepancies between phylogeny and assignment of STs were not observed. The STRUCTURE v2.3.4 software assigned three subpopulations corresponding to the STs 1–3, respectively. The population indices were consistent with those previously reported by other groups. Our results suggest the potential use of the ITS and rpl2 genes as molecular markers for Blastocystis subtyping as an alternative approach for the study of the genetic diversity observed within and between human isolates of this microorganism. Full article
(This article belongs to the Section Parasitology)
Show Figures

Figure 1

17 pages, 3118 KiB  
Article
Occurrence, Impact, and Multilocus Sequence Analysis of Alder Yellows Phytoplasma Infecting Common Alder and Italian Alder in Southern Italy
by Carmine Marcone, Roberto Pierro and Carmine Palmieri
Microorganisms 2024, 12(6), 1140; https://doi.org/10.3390/microorganisms12061140 - 4 Jun 2024
Viewed by 327
Abstract
Alder yellows (ALY) phytoplasma (16SrV-C) is associated with ALY, a disease of several Alnus (alder) species in Europe and A. rubra in North America. In all affected species, the symptoms are similar. However, latent infections are common. ALY phytoplasma includes different strains which [...] Read more.
Alder yellows (ALY) phytoplasma (16SrV-C) is associated with ALY, a disease of several Alnus (alder) species in Europe and A. rubra in North America. In all affected species, the symptoms are similar. However, latent infections are common. ALY phytoplasma includes different strains which may be occasionally transmitted to grapevines leading to some grapevine yellows diseases. In the current study, visual symptom assessment and PCR-based methods using universal and group-specific phytoplasma primers were used to update and extend knowledge on the occurrence, impact, and genetic diversity of ALY phytoplasma in declining and non-symptomatic A. glutinosa and A. cordata trees in the Basilicata and Campania regions of southern Italy. ALY phytoplasma was detected in 80% of alder trees examined. In symptomatic trees, no other cause of disease was observed. More than half of alder trees that tested phytoplasma-positive proved to be latently infected. A considerable genetic variability was observed among the newly recorded ALY phytoplasma strains in southern Italy in almost of the genes examined. These included 16S rRNA, 16S/23S rDNA spacer region, ribosomal protein rpsV (rpl22) and rpsC (rps3), map, imp, and groEL genes. Eleven new genotypes were identified at map gene sequence level. However, the genetic differences observed were not related to plant host species, geographical origin, and symptoms shown by infected alder trees. Also, this study indicates that ALY phytoplasma is more widespread than previously thought. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

12 pages, 2509 KiB  
Brief Report
Comparative Mitogenomics and Phylogenetic Implications for Nine Species of the Subfamily Meconematinae (Orthoptera: Tettigoniidae)
by Siyu Pang, Qianwen Zhang, Lili Liang, Yanting Qin, Shan Li and Xun Bian
Insects 2024, 15(6), 413; https://doi.org/10.3390/insects15060413 - 3 Jun 2024
Viewed by 351
Abstract
Currently, the subfamily Meconematinae encompasses 1029 species, but whole-mitochondrial-genome assemblies have only been made available for 13. In this study, the whole mitochondrial genomes (mitogenomes) of nine additional species in the subfamily Meconematinae were sequenced. The size ranged from 15,627 bp to 17,461 [...] Read more.
Currently, the subfamily Meconematinae encompasses 1029 species, but whole-mitochondrial-genome assemblies have only been made available for 13. In this study, the whole mitochondrial genomes (mitogenomes) of nine additional species in the subfamily Meconematinae were sequenced. The size ranged from 15,627 bp to 17,461 bp, indicating double-stranded circular structures. The length of the control region was the main cause of the difference in mitochondrial genome length among the nine species. All the mitogenomes including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (CR). The majority strand encoded 23 genes, and the minority strand encoded 14 genes. A phylogenetic analysis reaffirmed the monophyletic status of each subfamily, but the monophysitism of Xizicus, Xiphidiopsis and Phlugiolopsis was not supported. Full article
(This article belongs to the Special Issue Genetic Diversity of Insects)
Show Figures

Figure 1

21 pages, 4499 KiB  
Article
Transcriptional Comparison Reveals Differential Resistance Mechanisms between CMV-Resistant PBC688 and CMV-Susceptible G29
by Guangjun Guo, Baogui Pan, Chengsheng Gong, Shubin Wang, Jinbing Liu, Changzhou Gao and Weiping Diao
Genes 2024, 15(6), 731; https://doi.org/10.3390/genes15060731 - 2 Jun 2024
Viewed by 459
Abstract
The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV [...] Read more.
The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV proliferation and spread, while G29 exhibited higher viral accumulation. A transcriptome analysis revealed substantial differences in gene expressions between the two genotypes, particularly in pathways related to plant–pathogen interactions, MAP kinase, ribosomes, and photosynthesis. In G29, the resistance to CMV involved key genes associated with calcium-binding proteins, pathogenesis-related proteins, and disease resistance. However, in PBC688, the crucial genes contributing to CMV resistance were ribosomal and chlorophyll a–b binding proteins. Hormone signal transduction pathways, such as ethylene (ET) and abscisic acid (ABA), displayed distinct expression patterns, suggesting that CMV resistance in peppers is associated with ET and ABA. These findings deepen our understanding of CMV resistance in peppers, facilitating future research and variety improvement. Full article
(This article belongs to the Special Issue Vegetable Genetic Breeding)
Show Figures

Figure 1

16 pages, 6292 KiB  
Article
Comparative Analysis of Complete Chloroplast Genomes of Rubus in China: Hypervariable Regions and Phylogenetic Relationships
by Yufen Xu, Yongquan Li, Yanzhao Chen, Longyuan Wang, Bine Xue, Xianzhi Zhang, Wenpei Song, Wei Guo and Wei Wu
Genes 2024, 15(6), 716; https://doi.org/10.3390/genes15060716 - 31 May 2024
Viewed by 332
Abstract
With more than 200 species of native Rubus, China is considered a center of diversity for this genus. Due to a paucity of molecular markers, the phylogenetic relationships for this genus are poorly understood. In this study, we sequenced and assembled the [...] Read more.
With more than 200 species of native Rubus, China is considered a center of diversity for this genus. Due to a paucity of molecular markers, the phylogenetic relationships for this genus are poorly understood. In this study, we sequenced and assembled the plastomes of 22 out of 204 Chinese Rubus species (including varieties) from three of the eight sections reported in China, i.e., the sections Chamaebatus, Idaeobatus, and Malachobatus. Plastomes were annotated and comparatively analyzed with the inclusion of two published plastomes. The plastomes of all 24 Rubus species were composed of a large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs), and ranged in length from 155,464 to 156,506 bp. We identified 112 unique genes, including 79 protein-coding genes, 29 transfer RNAs, and four ribosomal RNAs. With highly consistent gene order, these Rubus plastomes showed strong collinearity, and no significant changes in IR boundaries were noted. Nine divergent hotspots were identified based on nucleotide polymorphism analysis: trnH-psbA, trnK-rps16, rps16-trnQ-psbK, petN-psbM, trnT-trnL, petA-psbJ, rpl16 intron, ndhF-trnL, and ycf1. Based on whole plastome sequences, we obtained a clearer phylogenetic understanding of these Rubus species. All sampled Rubus species formed a monophyletic group; however, sections Idaeobatus and Malachobatus were polyphyletic. These data and analyses demonstrate the phylogenetic utility of plastomes for systematic research within Rubus. Full article
(This article belongs to the Special Issue Advances in Evolution of Plant Organelle Genome—2nd Edition)
Show Figures

Figure 1

Back to TopTop