Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = rock bream

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2373 KiB  
Article
Evaluation of Formalin-Inactivated Vaccine Efficacy against Red Seabream Iridovirus (RSIV) in Laboratory and Field Conditions
by Joon-Gyu Min, Guk-Hyun Kim, Chong-Han Kim, Woo-Ju Kwon, Hyun-Do Jeong and Kwang-Il Kim
Vaccines 2024, 12(6), 680; https://doi.org/10.3390/vaccines12060680 - 19 Jun 2024
Viewed by 582
Abstract
Red seabream iridovirus (RSIV) is a major cause of marine fish mortality in Korea, with no effective vaccine available since its first occurrence in the 1990s. This study evaluated the efficacy of a formalin-killed vaccine against RSIV in rock bream under laboratory and [...] Read more.
Red seabream iridovirus (RSIV) is a major cause of marine fish mortality in Korea, with no effective vaccine available since its first occurrence in the 1990s. This study evaluated the efficacy of a formalin-killed vaccine against RSIV in rock bream under laboratory and field conditions. For the field trial, a total of 103,200 rock bream from two commercial marine cage-cultured farms in Southern Korea were vaccinated. Farm A vaccinated 31,100 fish in July 2020 and monitored them for 18 weeks, while farm B vaccinated 30,700 fish in August 2020 and monitored them for 12 weeks. At farm A, where there was no RSIV infection, the vaccine efficacy was assessed in the lab, showing a relative percentage of survival (RPS) ranging from 40% to 80%. At farm B, where natural RSIV infections occurred, cumulative mortality rates were 36.43% in the vaccinated group and 80.32% in the control group, resulting in an RPS of 54.67%. The RSIV-infectious status and neutralizing antibody titers in serum mirrored the cumulative mortality results. This study demonstrates that the formalin-killed vaccine effectively prevents RSIV in cage-cultured rock bream under both laboratory and field conditions. Full article
(This article belongs to the Special Issue Fish Disease Occurrence and Immune Prevention and Control)
Show Figures

Figure 1

16 pages, 4922 KiB  
Article
Red Sea Bream Iridovirus Kinetics, Tissue Tropism, and Interspecies Horizontal Transmission in Flathead Grey Mullets (Mugil cephalus)
by Kyung-Ho Kim, Gyoungsik Kang, Won-Sik Woo, Min-Young Sohn, Ha-Jeong Son, Mun-Gyeong Kwon, Jae-Ok Kim and Chan-Il Park
Animals 2023, 13(8), 1341; https://doi.org/10.3390/ani13081341 - 13 Apr 2023
Cited by 5 | Viewed by 2092
Abstract
Red sea bream iridovirus (RSIV) causes significant economic losses in the aquaculture industry. We analyzed the pathogenicity of RSIV in flathead grey mullets (Mugil cephalus), the correlation of histopathological lesions, and interspecies horizontal transmission, through immersion infection and cohabitation challenges. Flathead [...] Read more.
Red sea bream iridovirus (RSIV) causes significant economic losses in the aquaculture industry. We analyzed the pathogenicity of RSIV in flathead grey mullets (Mugil cephalus), the correlation of histopathological lesions, and interspecies horizontal transmission, through immersion infection and cohabitation challenges. Flathead grey mullets, which were challenged by immersion infection, exhibited mortality at 14 and 24 days after RSIV exposure. Viral shedding in seawater peaked 2–3 days before or after the observed mortality. Specific lesions of RSIV were observed in the spleen and kidney, and the correlation between histopathological grade and viral load was the highest in the spleen. In a cohabitation challenge, flathead grey mullets were the donors, and healthy rock bream, red sea bream, and flathead grey mullets were the recipients. Viral shedding in seawater was the highest in flathead grey mullet and rock bream at 25 °C, with 106.0 RSIV copies L/g at 14 dpi. No mortality was observed in any group challenged at 15 °C, and no RSIV was detected in seawater after 30 dpi. The virus shed from RSIV-infected flathead grey mullets caused horizontal transmission through seawater. These findings suggest that rapid decision-making is warranted when managing disease in fish farms. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

21 pages, 5605 KiB  
Article
Impact of Red Sea Bream Iridovirus Infection on Rock Bream (Oplegnathus fasciatus) and Other Fish Species: A Study of Horizontal Transmission
by Kyung-Ho Kim, Gyoungsik Kang, Won-Sik Woo, Min-Young Sohn, Ha-Jeong Son, Mun-Gyeong Kwon, Jae-Ok Kim and Chan-Il Park
Animals 2023, 13(7), 1210; https://doi.org/10.3390/ani13071210 - 30 Mar 2023
Cited by 7 | Viewed by 1982
Abstract
Red sea bream iridovirus (RSIV) causes significant economic losses in aquaculture. Here, we analyzed the pathogenicity, viral shedding, and transmission dynamics of RSIV in rock bream (Oplegnathus fasciatus) by employing immersion infection and cohabitation challenge models. Rock bream challenged by immersion [...] Read more.
Red sea bream iridovirus (RSIV) causes significant economic losses in aquaculture. Here, we analyzed the pathogenicity, viral shedding, and transmission dynamics of RSIV in rock bream (Oplegnathus fasciatus) by employing immersion infection and cohabitation challenge models. Rock bream challenged by immersion exposure exhibited 100% mortality within 35 days post RSIV exposure, indicating that the viral shedding in seawater peaked after mortality. At 25 °C, a positive correlation between the viral loads within infected rock bream and virus shedding into the seawater was observed. Specific RSIV lesions were observed in the spleen and kidney of the infected rock bream, and the viral load in the spleen had the highest correlation with the histopathological grade. A cohabitation challenge mimicking the natural transmission conditions was performed to assess the virus transmission and determine the pathogenicity and viral load. The RSIV-infected rock breams (donors) were cohabited with uninfected rock bream, red sea bream (Pagrus major), and flathead grey mullet (Mugil cephalus) (recipients) at both 25 °C and 15 °C. In the cohabitation challenge group maintained at 15 °C, no mortality was observed across all experimental groups. However, RSIV was detected in both seawater and the recipient fish. Our results provide preliminary data for further epidemiological analyses and aid in the development of preventive measures and management of RSIVD in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

19 pages, 2397 KiB  
Article
Investigating Salinity Effects in Brackish Aquaponics Systems: Evidencing the Co-Cultivation of the Halophyte Crithmum maritimum with the Euryhaline Sparus aurata
by Nikolaos Vlahos, Panagiotis Berillis, Efi Levizou, Efstathia Patsea, Nikolas Panteli, Maria Demertzioglou, Konstantinos Morfesis, Georgia Voudouri, Nikos Krigas, Kostantinos Kormas, Efthimia Antonopoulou and Eleni Mente
Appl. Sci. 2023, 13(6), 3385; https://doi.org/10.3390/app13063385 - 7 Mar 2023
Cited by 2 | Viewed by 1809
Abstract
The possibility of simultaneous production of halophyte and euryhaline fish creates huge interest in both commercial aquaponics systems and in research. The aim of the present study was to investigate the effect of three different salinities (8, 14, and 20 ppt) on the [...] Read more.
The possibility of simultaneous production of halophyte and euryhaline fish creates huge interest in both commercial aquaponics systems and in research. The aim of the present study was to investigate the effect of three different salinities (8, 14, and 20 ppt) on the growth performance and survival rate of sea bream (Sparus aurata) and rock samphire (Crithmum maritimum) in an experimental brackish aquaponic system. Furthermore, induction of heat shock proteins (Hsps) and phosphorylation of mitogen-activated protein kinases (MAPKs) were assessed through the sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analysis. A total number of 234 sea bream individuals were divided into nine autonomous aquaponic systems. The experiment lasted 45 days. In total, 54 individuals of rock samphire were used and were distributed into groups of six individuals per hydroponic tank using the raft method. Water quality showed stable fluctuation throughout the experiment, strongly supporting fish and plant growth performance and survival in both treatments. The results show that better growth performance for both sea bream and rock samphire (height increase) was evident in salinity 8 ppt compared to salinities 14 ppt and 20 ppt. Minimal or mild histopathological alterations were detected in gills, midgut, and liver for all three salinity groups. Exposure to different salinities modified Hsp60 and MAPKs expression in a tissue- and time-specific manner. During exposure to 8 ppt, constant Hsp60 levels and phosphorylation of MAPKs at 15 days may indicate a prominent protective role in the gills. The results show that sea bream and rock samphire can be used in brackish aquaponics systems with satisfactory growth performances, thus allowing for a range of commercial applications generating interest in their production. Full article
(This article belongs to the Section Marine Science and Engineering)
Show Figures

Figure 1

11 pages, 2127 KiB  
Brief Report
Red Sea Bream Iridovirus (RSIV) Kinetics in Rock Bream (Oplegnathus fasciatus) at Various Fish-Rearing Seawater Temperatures
by Kyung-Ho Kim, Kwang-Min Choi, Min-Soo Joo, Gyoungsik Kang, Won-Sik Woo, Min-Young Sohn, Ha-Jeong Son, Mun-Gyeong Kwon, Jae-Ok Kim, Do-Hyung Kim and Chan-Il Park
Animals 2022, 12(15), 1978; https://doi.org/10.3390/ani12151978 - 4 Aug 2022
Cited by 14 | Viewed by 2958
Abstract
Red sea bream iridoviral disease (RSIVD) causes serious economic losses in the aquaculture industry. In this paper, we evaluated RSIV kinetics in rock bream under various rearing water temperatures and different RSIV inoculation concentrations. High viral copy numbers (approximately 103.7–106.7 [...] Read more.
Red sea bream iridoviral disease (RSIVD) causes serious economic losses in the aquaculture industry. In this paper, we evaluated RSIV kinetics in rock bream under various rearing water temperatures and different RSIV inoculation concentrations. High viral copy numbers (approximately 103.7–106.7 RSIV genome copies/L/g) were observed during the period of active fish mortality after RSIV infection at all concentrations in the tanks (25 °C and 20 °C). In the group injected with 104 RSIV genome copies/fish, RSIV was not detected at 21–30 days post-infection (dpi) in the rearing seawater. In rock bream infected at 15 °C and subjected to increasing water temperature (1 °C/d until 25 °C) 3 days later, the virus replication rate and number of viral copies shed into the rearing seawater increased. With the decrease in temperature (1 °C/d) from 25 to 15 °C after the infection, the virus replicated rapidly and was released at high loads on the initial 3–5 dpi, whereas the number of viral copies in the fish and seawater decreased after 14 dpi. These results indicate that the number of viral copies shed into the rearing seawater varies depending on the RSIV infection level in rock bream. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 1829 KiB  
Article
Isolation and Characterization of Plasma-Derived Exosomes from the Marine Fish Rock Bream (Oplegnathus fasciatus) by Two Isolation Techniques
by Chamilani Nikapitiya, Eriyawala Hewage Thimira Thulshan Jayathilaka, Shan Lakmal Edirisinghe, Dinusha C. Rajapaksha, Withanage Prasadini Wasana, Jayasinghage Nirmani Chathurangika Jayasinghe and Mahanama De Zoysa
Fishes 2022, 7(1), 36; https://doi.org/10.3390/fishes7010036 - 2 Feb 2022
Cited by 5 | Viewed by 4181
Abstract
Exosomes are important mediators of intercellular communication and modulate many physiological and pathological processes. Knowledge of secretion, content, and biological functions of fish exosomes during pathological infection is still scarce due to lack of suitable standardized isolation techniques. In this study, we aimed [...] Read more.
Exosomes are important mediators of intercellular communication and modulate many physiological and pathological processes. Knowledge of secretion, content, and biological functions of fish exosomes during pathological infection is still scarce due to lack of suitable standardized isolation techniques. In this study, we aimed to isolate exosomes from the plasma of marine fish, rock bream (Oplegnathus fasciatus), by two isolation methods: differential ultracentrifugation (UC) and a commercial membrane affinity spin column technique (kit). Morphological and physicochemical characteristics of the isolated exosomes were determined by these two methods, and the efficiencies of the two methods were compared. Exosomes isolated by both methods were in the expected size range (30–200 nm) and had a characteristic cup-shape in transmission electron microscopy observation. Moreover, more intact exosomes were identified using the kit-based method than UC. Nanoparticle tracking analysis demonstrated a heterogeneous population of exosomes with a mean particle diameter of 114.6 ± 4.6 and 111.2 ± 2.2 nm by UC and a kit-based method, respectively. The particle concentration obtained by the kit method (1.05 × 1011 ± 1.23 × 1010 particles/mL) was 10-fold higher than that obtained by UC (4.90 × 1010 ± 2.91 × 109 particles/mL). The kit method had a comparatively higher total protein yield (1.86 mg) and exosome protein recovery (0.55 mg/mL plasma). Immunoblotting analysis showed the presence of exosome marker proteins (CD81, CD63, and HSP90) in the exosomes isolated by both methods and suggests the existence of exosomes. However, the absence of cytotoxicity or adverse immune responses to fish and mammalian cells by the exosomes isolated by the UC procedure indicates its suitability for functional studies in vitro. Overall, our basic characterization results indicate that the kit-based method is more suitable for isolating high-purity exosomes from fish plasma, whereas UC has higher safety in terms of yielding exosomes with low toxicity. This study provides evidence for the existence of typical exosomes in rock beam plasma and facilitates the selection of an efficient exosome isolation procedure for future applications in disease diagnosis and exosome therapy as fish medicine. Full article
Show Figures

Graphical abstract

35 pages, 15062 KiB  
Article
Complete Genome Sequences and Pathogenicity Analysis of Two Red Sea Bream Iridoviruses Isolated from Cultured Fish in Korea
by Min-A Jeong, Ye-Jin Jeong and Kwang-Il Kim
Fishes 2021, 6(4), 82; https://doi.org/10.3390/fishes6040082 - 15 Dec 2021
Cited by 3 | Viewed by 2966
Abstract
In Korea, red sea bream iridovirus (RSIV), especially subtype II, has been the main causative agent of red sea bream iridoviral disease since the 1990s. Herein, we report two Korean RSIV isolates with different subtypes based on the major capsid protein and adenosine [...] Read more.
In Korea, red sea bream iridovirus (RSIV), especially subtype II, has been the main causative agent of red sea bream iridoviral disease since the 1990s. Herein, we report two Korean RSIV isolates with different subtypes based on the major capsid protein and adenosine triphosphatase genes: 17SbTy (RSIV mixed subtype I/II) from Japanese seabass (Lateolabrax japonicus) and 17RbGs (RSIV subtype II) from rock bream (Oplegnathus fasciatus). The complete genome sequences of 17SbTy and 17RbGs were 112,360 and 112,235 bp long, respectively (115 and 114 open reading frames [ORFs], respectively). Based on nucleotide sequence homology with sequences of representative RSIVs, 69 of 115 ORFs of 17SbTy were most closely related to subtype II (98.48–100% identity), and 46 were closely related to subtype I (98.77–100% identity). In comparison with RSIVs, 17SbTy and 17RbGs carried two insertion/deletion mutations (ORFs 014R and 102R on the basis of 17SbTy) in regions encoding functional proteins (a DNA-binding protein and a myristoylated membrane protein). Notably, survival rates differed significantly between 17SbTy-infected and 17RbGs-infected rock breams, indicating that the genomic characteristics and/or adaptations to their respective original hosts might influence pathogenicity. Thus, this study provides complete genome sequences and insights into the pathogenicity of two newly identified RSIV isolates classified as a mixed subtype I/II and subtype II. Full article
Show Figures

Figure 1

29 pages, 4681 KiB  
Article
Comparative Characterization of Two cxcl8 Homologs in Oplegnathus fasciatus: Genomic, Transcriptional and Functional Analyses
by Navaneethaiyer Umasuthan, SDNK Bathige, William Shanthakumar Thulasitha, Minyoung Oh and Jehee Lee
Biomolecules 2020, 10(10), 1382; https://doi.org/10.3390/biom10101382 - 28 Sep 2020
Cited by 6 | Viewed by 2650
Abstract
CXCL8 (interleukin-8, IL-8) is a CXC family chemokine that recruits specific target cells and mediates inflammation and wound healing. This study reports the identification and characterization of two cxcl8 homologs from rock bream, Oplegnathus fasciatus. Investigation of molecular signature, homology, phylogeny, and [...] Read more.
CXCL8 (interleukin-8, IL-8) is a CXC family chemokine that recruits specific target cells and mediates inflammation and wound healing. This study reports the identification and characterization of two cxcl8 homologs from rock bream, Oplegnathus fasciatus. Investigation of molecular signature, homology, phylogeny, and gene structure suggested that they belonged to lineages 1 (L1) and 3 (L3), and designated Ofcxcl8-L1 and Ofcxcl8-L3. While Ofcxcl8-L1 and Ofcxcl8-L3 revealed quadripartite and tripartite organization, in place of the mammalian ELR (Glu-Leu-Arg) motif, their peptides harbored EMH (Glu-Met-His) and NSH (Asn-Ser-His) motifs, respectively. Transcripts of Ofcxcl8s were constitutively detected by Quantitative Real-Time PCR (qPCR) in 11 tissues examined, however, at different levels. Ofcxcl8-L1 transcript robustly responded to treatments with stimulants, such as flagellin, concanavalin A, lipopolysaccharide, and poly(I:C), and pathogens, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus, when compared with Ofcxcl8-L3 mRNA. The differences in the putative promoter features may partly explain the differential transcriptional modulation of Ofcxcl8s. Purified recombinant OfCXCL8 (rOfCXCL8) proteins were used in in vitro chemotaxis and proliferation assays. Despite the lack of ELR motif, both rOfCXCL8s exhibited leukocyte chemotactic and proliferative functions, where the potency of rOfCXCL8-L1 was robust and significant compared to that of rOfCXCL8-L3. The results, taken together, are indicative of the crucial importance of Ofcxcl8s in inflammatory responses and immunoregulatory roles in rock bream immunity. Full article
Show Figures

Graphical abstract

23 pages, 7199 KiB  
Article
Co-Expression Network Analysis of Spleen Transcriptome in Rock Bream (Oplegnathus fasciatus) Naturally Infected with Rock Bream Iridovirus (RBIV)
by Ahran Kim, Dahye Yoon, Yunjin Lim, Heyong Jin Roh, Suhkmann Kim, Chan-Il Park, Heui-Soo Kim, Hee-Jae Cha, Yung Hyun Choi and Do-Hyung Kim
Int. J. Mol. Sci. 2020, 21(5), 1707; https://doi.org/10.3390/ijms21051707 - 2 Mar 2020
Cited by 18 | Viewed by 5006
Abstract
Rock bream iridovirus (RBIV) is a notorious agent that causes high mortality in aquaculture of rock bream (Oplegnathus fasciatus). Despite severity of this virus, no transcriptomic studies on RBIV-infected rock bream that can provide fundamental information on protective mechanism against the [...] Read more.
Rock bream iridovirus (RBIV) is a notorious agent that causes high mortality in aquaculture of rock bream (Oplegnathus fasciatus). Despite severity of this virus, no transcriptomic studies on RBIV-infected rock bream that can provide fundamental information on protective mechanism against the virus have been reported so far. This study aimed to investigate physiological mechanisms between host and RBIV through transcriptomic changes in the spleen based on RNA-seq. Depending on infection intensity and sampling time point, fish were divided into five groups: uninfected healthy fish at week 0 as control (0C), heavy infected fish at week 0 (0H), heavy mixed RBIV and bacterial infected fish at week 0 (0MH), uninfected healthy fish at week 3 (3C), and light infected fish at week 3 (3L). We explored clusters from 35,861 genes with Fragments Per Kilo-base of exon per Million mapped fragments (FPKM) values of 0.01 or more through signed co-expression network analysis using WGCNA package. Nine of 22 modules were highly correlated with viral infection (|gene significance (GS) vs. module membership (MM) |> 0.5, p-value < 0.05). Expression patterns in selected modules were divided into two: heavy infected (0H and 0MH) and control and light-infected groups (0C, 3C, and 3L). In functional analysis, genes in two positive modules (5448 unigenes) were enriched in cell cycle, DNA replication, transcription, and translation, and increased glycolysis activity. Seven negative modules (3517 unigenes) built in this study showed significant decreases in the expression of genes in lymphocyte-mediated immune system, antigen presentation, and platelet activation, whereas there was significant increased expression of endogenous apoptosis-related genes. These changes lead to RBIV proliferation and failure of host defense, and suggests the importance of blood cells such as thrombocytes and B cells in rock bream in RBIV infection. Interestingly, a hub gene, pre-mRNA processing factor 19 (PRPF19) showing high connectivity (kME), and expression of this gene using qRT-PCR was increased in rock bream blood cells shortly after RBIV was added. It might be a potential biomarker for diagnosis and vaccine studies in rock bream against RBIV. This transcriptome approach and our findings provide new insight into the understanding of global rock bream-RBIV interactions including immune and pathogenesis mechanisms. Full article
(This article belongs to the Special Issue Fish Immunology)
Show Figures

Figure 1

20 pages, 3483 KiB  
Article
An Experimental Brackish Aquaponic System Using Juvenile Gilthead Sea Bream (Sparus aurata) and Rock Samphire (Crithmum maritimum)
by Nikolaos Vlahos, Efi Levizou, Paraskevi Stathopoulou, Panagiotis Berillis, Efthimia Antonopoulou, Vlasoula Bekiari, Nikos Krigas, Konstantinos Kormas and Eleni Mente
Sustainability 2019, 11(18), 4820; https://doi.org/10.3390/su11184820 - 4 Sep 2019
Cited by 15 | Viewed by 4076
Abstract
Brackish aquaponics using Mediterranean fish and plants provides an alternative opportunity for a combined production of high-quality food products with high commercial and nutritional value. This is the first study that investigates the effect of two different salinities (8 and 20 ppt) on [...] Read more.
Brackish aquaponics using Mediterranean fish and plants provides an alternative opportunity for a combined production of high-quality food products with high commercial and nutritional value. This is the first study that investigates the effect of two different salinities (8 and 20 ppt) on growth and survival of Sparus aurata and Crithmum maritimum along with the cellular stress pathways using the activation of heat shock proteins (HSPs) and mitogen-activated protein kinase (MAPK) protein family members and the water bacterial abundance. In total, 156 fish were used (average initial weight of 2.55 g, length of 5.57 cm) and 36 plants (average initial height of 8.23 cm) in floating racks above the 135 L fish tanks. Survival rate for both organisms was 100%. C. crithmum grew better at 8 ppt (t-test, p < 0.05). The growth rate of S. aurata was similar for both treatments (p > 0.05). HSPs and MAPK were differentially expressed, showing tissue-specific responses. The average bacterial abundance at the end of the experiment was higher (p < 0.05) in the 20 ppt (18.6 ± 0.91 cells × 105/mL) compared to the 8 ppt (6.8 ± 1.9 cells × 105/mL). The results suggest that the combined culture of euryhaline fish and halophytes provides good quality products in brackish aquaponics systems. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

1521 KiB  
Review
Megalocytiviruses
by Jun Kurita and Kazuhiro Nakajima
Viruses 2012, 4(4), 521-538; https://doi.org/10.3390/v4040521 - 10 Apr 2012
Cited by 216 | Viewed by 17208
Abstract
The genus Megalocytivirus, represented by red sea bream iridovirus (RSIV), the first identified and one of the best characterized megalocytiviruses, Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus, and numerous other isolates, is the newest genus within [...] Read more.
The genus Megalocytivirus, represented by red sea bream iridovirus (RSIV), the first identified and one of the best characterized megalocytiviruses, Infectious spleen and kidney necrosis virus (ISKNV), the type species of the genus, and numerous other isolates, is the newest genus within the family Iridoviridae. Viruses within this genus are causative agents of severe disease accompanied by high mortality in multiple species of marine and freshwater fish. To date outbreaks of megalocytivirus-induced disease have occurred primarily in south-east Asia and Japan, but infections have been detected in Australia and North America following the importation of infected ornamental fish. The first outbreak of megalocytiviral disease was recorded in cultured red sea bream (Pagrus major) in Japan in 1990 and was designated red sea bream iridovirus disease (RSIVD). Following infection fish became lethargic and exhibited severe anemia, petechiae of the gills, and enlargement of the spleen. Although RSIV was identified as an iridovirus, sequence analyses of RSIV genes revealed that the virus did not belong to any of the four known genera within the family Iridoviridae. Thus a new, fifth genus was established and designated Megalocytivirus to reflect the characteristic presence of enlarged basophilic cells within infected organs. Indirect immunofluorescence tests employing recently generated monoclonal antibodies and PCR assays are currently used in the rapid diagnosis of RSIVD. For disease control, a formalin-killed vaccine was developed and is now commercially available in Japan for several fish species. Following the identification of RSIV, markedly similar viruses such as infectious spleen and kidney necrosis virus (ISKNV), dwarf gourami iridovirus (DGIV), turbot reddish body iridovirus (TRBIV), Taiwan grouper iridovirus (TGIV), and rock bream iridovirus (RBIV) were isolated in East and Southeast Asia. Phylogenetic analyses of the major capsid protein (MCP) and ATPase genes indicated that although these viruses shared considerable sequence identity, they could be divided into three tentative species, represented by RSIV, ISKNV and TRBIV, respectively. Whole genome analyses have been reported for several of these viruses. Sequence analysis detected a characteristic difference in the genetic composition of megalocytiviruses and other members of the family in reference to the large and small subunits of ribonucleotide reductase (RR-1, RR‑2). Megalocytiviruses contain only the RR-2 gene, which is of eukaryotic origin; whereas the other genera encode both the RR-1 and RR-2 genes which are thought to originate from Rickettsia-like a-proteobacteria. Full article
(This article belongs to the Special Issue Viruses Infecting Fish, Amphibians, and Reptiles)
Show Figures

Figure 1

Back to TopTop