Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = saddle-point method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3920 KiB  
Article
Effect of Orbital Symmetry on Time–Energy Distributions of F Ions in the Attoclock Scheme
by Jian-Hong Chen and Song-Feng Zhao
Symmetry 2024, 16(8), 1019; https://doi.org/10.3390/sym16081019 - 9 Aug 2024
Viewed by 390
Abstract
The mapping relation between the emission angle of the photoelectron and its ionization time (i.e., the angle–time mapping) is important for the attoclock measurement. For a long time, the angle–time mapping was assumed to be angularly uniform. Recent investigations have demonstrated that the [...] Read more.
The mapping relation between the emission angle of the photoelectron and its ionization time (i.e., the angle–time mapping) is important for the attoclock measurement. For a long time, the angle–time mapping was assumed to be angularly uniform. Recent investigations have demonstrated that the angle–time mapping is discontinuous for the low-energy electron at the angle for the minimum yield. However, the previous results were interpreted based on the assumption of s-electron initial states for noble-gas atoms, and the effect of the initial orbital symmetry on the angle–time mapping has been rarely investigated. In this work, we investigate the influence of the initial orbital symmetry on time–energy distribution using F ions as a specific example. We demonstrate that the initial orbital symmetry significantly impacts the time–energy distribution. This behavior can be well explained by the saddle-point method. More interestingly, it is found that the angle–time mapping is strongly dependent on the initial orbital symmetry in the elliptically polarized laser field, especially for the low-energy electrons. Our work holds great significance for further developing the attoclock scheme. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

28 pages, 715 KiB  
Article
Bubble Dynamics in the Polyakov Quark-Meson Model
by Junrong Wang, Jinshuang Jin and Hong Mao
Symmetry 2024, 16(7), 893; https://doi.org/10.3390/sym16070893 - 12 Jul 2024
Cited by 1 | Viewed by 840
Abstract
In the framework of the Polyakov quark-meson model with two flavors, the bubble dynamics of a first-order phase transition in the region of high density and low temperature are investigated by using the homogeneous thermal nucleation theory. In mean-field approximation, after obtaining the [...] Read more.
In the framework of the Polyakov quark-meson model with two flavors, the bubble dynamics of a first-order phase transition in the region of high density and low temperature are investigated by using the homogeneous thermal nucleation theory. In mean-field approximation, after obtaining the effective potential with the inclusion of the fermionic vacuum term, we build a geometric method to search two existing minima, which can be actually connected by a bounce interpolated between a local minimum to an adjacent global one. For both weak and strong first-order hadron quark phase transitions, as fixing the chemical potentials at μ=306MeV and μ=310MeV, the bubble profiles, the surface tension, the typical radius of the bounce, and the saddle-point action as a function of temperature are numerically calculated in the presence of a nucleation bubble. It is found that the surface tension remains at a very small value even when the density is high. It is also noticed that the deconfinement phase transition does not change the chiral phase transition dramatically for light quarks and phase boundaries for hadron and quark matter should be resized properly according to the saddle-point action evaluated on the bounce solution. Full article
(This article belongs to the Special Issue Symmetry in Hadron Physics)
Show Figures

Figure 1

34 pages, 1106 KiB  
Article
Stochastic Tunneling in de Sitter Spacetime
by Taiga Miyachi, Jiro Soda and Junsei Tokuda
Universe 2024, 10(7), 292; https://doi.org/10.3390/universe10070292 - 11 Jul 2024
Cited by 3 | Viewed by 555
Abstract
Tunneling processes in de Sitter spacetime are studied by using the stochastic approach. We evaluate the Martin–Siggia–Rose–Janssen–de Dominicis (MSRJD) functional integral by using the saddle-point approximation to obtain the tunneling rate. The applicability conditions of this method are clarified using the Schwinger–Keldysh formalism. [...] Read more.
Tunneling processes in de Sitter spacetime are studied by using the stochastic approach. We evaluate the Martin–Siggia–Rose–Janssen–de Dominicis (MSRJD) functional integral by using the saddle-point approximation to obtain the tunneling rate. The applicability conditions of this method are clarified using the Schwinger–Keldysh formalism. In the case of a shallow potential barrier, we reproduce the Hawking–Moss (HM) tunneling rate. Remarkably, in contrast to the HM picture, the configuration derived from the MSRJD functional integral satisfies physically natural boundary conditions. We also discuss the case of a steep potential barrier and find an interesting Coleman–de Luccia (CDL) bubblelike configuration. Since the starting point of our analysis is the Schwinger–Keldysh path integral, which can be formulated in a more generic setup and incorporates quantum effects, our formalism sheds light on further studies of tunneling phenomena from a real-time perspective. Full article
(This article belongs to the Special Issue Cosmological Models of the Universe)
Show Figures

Figure 1

22 pages, 4248 KiB  
Article
Deep Reinforcement Learning-Based Differential Game Guidance Law against Maneuvering Evaders
by Axing Xi and Yuanli Cai
Aerospace 2024, 11(7), 558; https://doi.org/10.3390/aerospace11070558 - 6 Jul 2024
Viewed by 567
Abstract
To achieve the intelligent interception of different types of maneuvering evaders, based on deep reinforcement learning, a novel intelligent differential game guidance law is proposed in the continuous action domain. Different from traditional guidance laws, the proposed guidance law can avoid tedious manual [...] Read more.
To achieve the intelligent interception of different types of maneuvering evaders, based on deep reinforcement learning, a novel intelligent differential game guidance law is proposed in the continuous action domain. Different from traditional guidance laws, the proposed guidance law can avoid tedious manual settings and save cost efforts. First, the interception problem is transformed into the pursuit–evasion game problem, which is solved by zero-sum differential game theory. Next, the Nash equilibrium strategy is obtained through the Markov game process. To implement the proposed intelligent differential game guidance law, an actor–critic neural network based on deep deterministic policy gradient is constructed to calculate the saddle point of the differential game guidance problem. Then, a reward function is designed, which includes the tradeoffs among guidance accuracy, energy consumption, and interception time. Finally, compared with traditional methods, the interception accuracy of the proposed intelligent differential game guidance law is 99.2%, energy consumption is reduced by 47%, and simulation time is shortened by 1.58 s. All results reveal that the proposed intelligent differential game guidance law has better intelligent decision-making ability. Full article
(This article belongs to the Special Issue Dynamics, Guidance and Control of Aerospace Vehicles)
Show Figures

Figure 1

16 pages, 15928 KiB  
Article
An Optimal ADMM for Unilateral Obstacle Problems
by Shougui Zhang, Xiyong Cui, Guihua Xiong and Ruisheng Ran
Mathematics 2024, 12(12), 1901; https://doi.org/10.3390/math12121901 - 19 Jun 2024
Viewed by 528
Abstract
We propose a new alternating direction method of multipliers (ADMM) with an optimal parameter for the unilateral obstacle problem. We first use the five-point difference scheme to discretize the problem. Then, we present an augmented Lagrangian by introducing an auxiliary unknown, and an [...] Read more.
We propose a new alternating direction method of multipliers (ADMM) with an optimal parameter for the unilateral obstacle problem. We first use the five-point difference scheme to discretize the problem. Then, we present an augmented Lagrangian by introducing an auxiliary unknown, and an ADMM is applied to the corresponding saddle-point problem. Through eliminating the primal and auxiliary unknowns, a pure dual algorithm is then used. The convergence of the proposed method is analyzed, and a simple strategy is presented for selecting the optimal parameter, with the largest and smallest eigenvalues of the iterative matrix. Several numerical experiments confirm the theoretical findings of this study. Full article
(This article belongs to the Special Issue Variational Inequality and Mathematical Analysis)
Show Figures

Figure 1

27 pages, 4246 KiB  
Article
Investigating the Dynamic Behavior of Integer and Noninteger Order System of Predation with Holling’s Response
by Kolade M. Owolabi, Sonal Jain and Edson Pindza
Mathematics 2024, 12(10), 1530; https://doi.org/10.3390/math12101530 - 14 May 2024
Viewed by 735
Abstract
The paper’s primary objective is to examine the dynamic behavior of an integer and noninteger predator–prey system with a Holling type IV functional response in the Caputo sense. Our focus is on understanding how harvesting influences the stability, equilibria, bifurcations, and limit cycles [...] Read more.
The paper’s primary objective is to examine the dynamic behavior of an integer and noninteger predator–prey system with a Holling type IV functional response in the Caputo sense. Our focus is on understanding how harvesting influences the stability, equilibria, bifurcations, and limit cycles within this system. We employ qualitative and quantitative analysis methods rooted in bifurcation theory, dynamical theory, and numerical simulation. We also delve into studying the boundedness of solutions and investigating the stability and existence of equilibrium points within the system. Leveraging Sotomayor’s theorem, we establish the presence of both the saddle-node and transcritical bifurcations. The analysis of the Hopf bifurcation is carried out using the normal form theorem. The model under consideration is extended to the fractional reaction–diffusion model which captures non-local and long-range effects more accurately than integer-order derivatives. This makes fractional reaction–diffusion systems suitable for modeling phenomena with anomalous diffusion or memory effects, improving the fidelity of simulations in turn. An adaptable numerical technique for solving this class of differential equations is also suggested. Through simulation results, we observe that one of the Lyapunov exponents has a negative value, indicating the potential for the emergence of a stable-limit cycle via bifurcation as well as chaotic and complex spatiotemporal distributions. We supplement our analytical investigations with numerical simulations to provide a comprehensive understanding of the system’s behavior. It was discovered that both the prey and predator populations will continue to coexist and be permanent, regardless of the choice of fractional parameter. Full article
(This article belongs to the Special Issue Numerical Solution of Differential Equations and Their Applications)
Show Figures

Figure 1

22 pages, 15315 KiB  
Article
Study on Wind-Induced Dynamic Response and Statistical Parameters of Skeleton Supported Saddle Membrane Structure in Arching and Vertical Direction
by Ziye Chen, Changjiang Liu, Dong Li, Jian Liu, Xiaowei Deng, Chiyu Luo and Guangen Zhou
Buildings 2024, 14(5), 1339; https://doi.org/10.3390/buildings14051339 - 9 May 2024
Viewed by 681
Abstract
Wind tunnel tests and numerical simulations are the mainstream methods to study the wind-induced vibration of structures. However, few articles use statistical parameters to point out the differences and errors of these two research methods in exploring the wind-induced response of membrane structures. [...] Read more.
Wind tunnel tests and numerical simulations are the mainstream methods to study the wind-induced vibration of structures. However, few articles use statistical parameters to point out the differences and errors of these two research methods in exploring the wind-induced response of membrane structures. The displacement vibration of a saddle membrane structure under the action of wind load is studied by wind tunnel tests and numerical simulation, and statistical parameters (mean, range, skewness, and kurtosis) are introduced to analyze and compare the displacement data. The most unfavorable wind direction angle is 0° (arching direction). The error between experiment and simulation is less than 10%. The probability density curve has a good coincidence degree. Both the test and simulation show a certain skewed distribution, indicating that the wind-induced vibration of the membrane does not obey the Gaussian distribution. The displacement response obtained by the test has good stability, while the simulated displacement response has strong discreteness. The difference between the two research methods is quantitatively given by introducing statistical parameters, which is helpful to improve the shortcomings of wind tunnel tests and numerical simulations. Full article
(This article belongs to the Special Issue Wind Load Effects on High-Rise and Long-Span Structures)
Show Figures

Figure 1

20 pages, 2799 KiB  
Article
Towards Modelling Mechanical Shaking Using Potential Energy Surfaces: A Toy Model Analysis
by Sergei D. Odintsov and Vasilis K. Oikonomou
Symmetry 2024, 16(5), 572; https://doi.org/10.3390/sym16050572 - 7 May 2024
Cited by 1 | Viewed by 684
Abstract
In this work, we formalize the effect of mechanical shaking by using various forms of an externally exerted force, which may be constant or may be position-dependent, and we examine the changes in the potential energy surfaces that quantify the chemical reaction. We [...] Read more.
In this work, we formalize the effect of mechanical shaking by using various forms of an externally exerted force, which may be constant or may be position-dependent, and we examine the changes in the potential energy surfaces that quantify the chemical reaction. We use a simple toy model to model the potential energy surfaces of a chemical reaction, and we study the effect of a constant or position-dependent externally exerted force for various forms of the force. As we demonstrate, the effect of the force can be quite dramatic on the potential energy surfaces, which acquire new stationary points and new Newton trajectories that are distinct from the original ones that were obtained in the absence of mechanochemical effects. We also introduce a new approach to mechanochemical interactions, using a dynamical systems approach for the Newton trajectories. As we show, the dynamical system attractor properties of the trajectories in the phase space are identical to the stationary points of the potential energy surfaces, but the phase space contains much more information regarding the possible evolution of the chemical reaction—information that is quantified by the existence of unstable or saddle fixed points in the phase space. We also discuss how an experimental method for a suitable symmetric liquid solution substance might formalize the effect of shaking via various forms of external force, even in the form of an extended coordinate-dependent force matrix. This approach may experimentally quantify the Epstein effect of shaking in chemical solutions via mechanochemistry methods. Full article
(This article belongs to the Special Issue Symmetry: Recent Developments in Engineering Science and Applications)
Show Figures

Figure 1

25 pages, 4690 KiB  
Article
A Static Security Region Analysis of New Power Systems Based on Improved Stochastic–Batch Gradient Pile Descent
by Jiahui Wu, Yide Zhou, Haiyun Wang and Weiqing Wang
Appl. Sci. 2024, 14(9), 3730; https://doi.org/10.3390/app14093730 - 27 Apr 2024
Viewed by 536
Abstract
The uncertainty in the new power system has increased, leading to limitations in traditional stability analysis methods. Therefore, considering the perspective of the three-dimensional static security region (SSR), we propose a novel approach for system static stability analysis. To address the slow training [...] Read more.
The uncertainty in the new power system has increased, leading to limitations in traditional stability analysis methods. Therefore, considering the perspective of the three-dimensional static security region (SSR), we propose a novel approach for system static stability analysis. To address the slow training speed of traditional deep learning algorithms using batch gradient descent (BGD), we introduce an improved stochastic–batch gradient descent (S-BGD) search method that combines the advantages of stochastic gradient descent (SGD) in fast training. This method ensures both speed and precision in parameter training. Moreover, to tackle the problem of getting trapped in local optima and saddle points during parameter training, we draw inspiration from kinematic theory and propose a gradient pile (GP) training method. By utilizing accumulated gradients as parameter corrections, this method effectively avoids getting stuck in local optima and saddle points, thereby enhancing precision. Finally, we apply the proposed methods to construct the static security region for the IEEE-118 new power system using its data as samples, demonstrating the effectiveness of our approach. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 11227 KiB  
Article
A Method for Stabilizing the Vibration Amplitude of a Flip-Flow Vibrating Screen Using Piecewise Linear Springs
by Dongdong Lin, Xinwen Wang, Ningning Xu, Weiran Zuo and Zhian Liang
Minerals 2024, 14(4), 406; https://doi.org/10.3390/min14040406 - 16 Apr 2024
Viewed by 827
Abstract
The flip-flow vibrating screen (FFVS) is a novel multi-body screening equipment that utilizes vibrations to classify bulk materials in the field of screening machinery. The relative amplitude of FFVSs determines the tension and ejection intensity of elastic flip-flow screen panels, which is a [...] Read more.
The flip-flow vibrating screen (FFVS) is a novel multi-body screening equipment that utilizes vibrations to classify bulk materials in the field of screening machinery. The relative amplitude of FFVSs determines the tension and ejection intensity of elastic flip-flow screen panels, which is a critical operating parameter affecting the screening performance. However, FFVSs generally suffer from large variations of relative amplitude caused by the loading of materials and the changes in shear spring stiffness (the temperature changes of the shear springs lead to their stiffness changes), which significantly reduce the screening efficiency and lifespan of FFVSs. To address this problem, this paper proposes a nonlinear stiffness-based method for stabilizing the vibration amplitude of FFVSs using piecewise linear springs. By introducing these springs between the two frames, the sensitivity of the relative amplitude to shear spring stiffness is reduced, thereby achieving the stabilization of the relative amplitude of FFVSs. In this study, the variations of the vibration amplitude of the FFVS due to the loading of materials and the changes in shear spring stiffness were first demonstrated in a reasonable operating frequency range. Then the reasonable operating frequency range and dynamics of the resultant nonlinear flip-flow vibrating screen (NFFVS) with piecewise linear springs were investigated using the harmonic balance method (HBM) and the Runge–Kutta numerical method. The operating frequency region for the NFFVS lies between the critical frequency ωcs and the frequency ωlb corresponding to the saddle-node bifurcation point. Finally, a test rig was designed to validate the theoretical predictions. Theoretical and experimental results demonstrate that piecewise linear springs can effectively stabilize the relative amplitude of the FFVS. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

12 pages, 1994 KiB  
Article
Modulation Transfer between Microwave Beams: Asymptotic Evaluation of Integrals with Pole Singularities near a First-Order Saddle Point
by Ilaria Cacciari and Anedio Ranfagni
Axioms 2024, 13(3), 178; https://doi.org/10.3390/axioms13030178 - 7 Mar 2024
Viewed by 847
Abstract
Experimental results of delay-time measurements in the transfer of modulation between microwave beams, as reported in previous articles, were interpreted on a competition (interference) between two waves, one of which is modulated and the other is a continuous wave (c.w.). The creation of [...] Read more.
Experimental results of delay-time measurements in the transfer of modulation between microwave beams, as reported in previous articles, were interpreted on a competition (interference) between two waves, one of which is modulated and the other is a continuous wave (c.w.). The creation of one of these waves was attributed to a saddle-point contribution, while the other was attributed to pole singularities. In this paper, such an assumption is justified by a quantitative field-amplitude analysis in order to make the modeling plausible. In particular, two ways of calculating field amplitudes are considered. These lead to results that are quantitatively markedly different, although qualitatively similar. Full article
(This article belongs to the Special Issue Stochastic Processes in Quantum Mechanics and Classical Physics)
Show Figures

Figure 1

11 pages, 313 KiB  
Article
Calculation of Sommerfeld Integrals in Dipole Radiation Problems
by Seil Sautbekov, Merey Sautbekova, Kuralay Baisalova and Mustakhim Pshikov
Mathematics 2024, 12(2), 298; https://doi.org/10.3390/math12020298 - 17 Jan 2024
Cited by 1 | Viewed by 825
Abstract
This article proposes asymptotic methods for calculating Sommerfeld integrals, which enable us to calculate the integral using the expansion of a function into an infinite power series at the saddle point, where the role of a rapidly oscillating function under the integral can [...] Read more.
This article proposes asymptotic methods for calculating Sommerfeld integrals, which enable us to calculate the integral using the expansion of a function into an infinite power series at the saddle point, where the role of a rapidly oscillating function under the integral can be fulfilled either by an exponential or by its product by the Hankel function. The proposed types of Sommerfeld integrals are generalized on the basis of integral representations of the Hertz radiator fields in the form of the inverse Hankel transform with the subsequent replacement of the Bessel function by the Hankel function. It is shown that the numerical values of the saddle point are complex. During integration, reference or so-called standard integrals, which contain the main features of the integrand function, were used. As a demonstration of the accuracy of the technique, a previously known asymptotic formula for the Hankel functions was obtained in the form of an infinite series. The proposed method for calculating Sommerfeld integrals can be useful in solving the half-space Sommerfeld problem. The authors present an example in the form of an infinite series for the magnetic field of reflected waves, obtained directly through the Sommerfeld integral (SI). Full article
(This article belongs to the Section Computational and Applied Mathematics)
Show Figures

Figure 1

17 pages, 5038 KiB  
Article
Nonlinear Vibration Characteristics and Bifurcations of a Rotor System Subjected to Brush Seal Forces
by Yingyong Zou, Mukai Wang, Duhui Lu, Yongde Zhang, Zili Xu and Yeyin Xu
Appl. Sci. 2023, 13(20), 11539; https://doi.org/10.3390/app132011539 - 21 Oct 2023
Viewed by 870
Abstract
In the paper, nonlinear vibration characteristics of a rotor system are investigated. Such a nonlinear rotor system is subjected to brush seal forces, which are obtained by integrating the bristle force along the entire ring. The nonlinear brush seal rotor system is constructed [...] Read more.
In the paper, nonlinear vibration characteristics of a rotor system are investigated. Such a nonlinear rotor system is subjected to brush seal forces, which are obtained by integrating the bristle force along the entire ring. The nonlinear brush seal rotor system is constructed by merging a flexible rotor with nonlinear seal forces. The research is aimed at studying the nonlinear vibration characteristics and bifurcations of the motions under a variety of eccentricity circumstances. Different kinds of bifurcations are successfully obtained by mathematical discretization and mapping manipulation. Such a discrete mapping method successfully predicts the stable and unstable motions accurately. The period-doubling bifurcations and saddle node bifurcations of the rotor system are obtained. The sole unstable solutions are obtained, which are special, and a normal numerical integration method cannot solve this problem, which provides advantages in rotor design and motion control. According to the results, nonlinear resonances are found between the stable and unstable motions. The greater the eccentricity of the rotor, the greater the number of bifurcation points that occur during the rotor’s nonlinear motions, as well as the larger the ranges of speeds where the motions are unstable. Saddle node bifurcations generate unstable nonlinear motions and non-smooth motions, which may bring damage to the mechanical rotors. The period-doubling bifurcations produce the route from period-1 to period-2 motions in the nonlinear rotor system. The research provides a new perspective to study the bifurcations and stability of the nonlinear rotor systems. Full article
(This article belongs to the Special Issue Advances in Nonlinear Dynamics and Mechanical Vibrations)
Show Figures

Figure 1

26 pages, 679 KiB  
Article
Deep Neural Networks Training by Stochastic Quasi-Newton Trust-Region Methods
by Mahsa Yousefi and Ángeles Martínez
Algorithms 2023, 16(10), 490; https://doi.org/10.3390/a16100490 - 20 Oct 2023
Cited by 1 | Viewed by 1470
Abstract
While first-order methods are popular for solving optimization problems arising in deep learning, they come with some acute deficiencies. To overcome these shortcomings, there has been recent interest in introducing second-order information through quasi-Newton methods that are able to construct Hessian approximations using [...] Read more.
While first-order methods are popular for solving optimization problems arising in deep learning, they come with some acute deficiencies. To overcome these shortcomings, there has been recent interest in introducing second-order information through quasi-Newton methods that are able to construct Hessian approximations using only gradient information. In this work, we study the performance of stochastic quasi-Newton algorithms for training deep neural networks. We consider two well-known quasi-Newton updates, the limited-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS) and the symmetric rank one (SR1). This study fills a gap concerning the real performance of both updates in the minibatch setting and analyzes whether more efficient training can be obtained when using the more robust BFGS update or the cheaper SR1 formula, which—allowing for indefinite Hessian approximations—can potentially help to better navigate the pathological saddle points present in the non-convex loss functions found in deep learning. We present and discuss the results of an extensive experimental study that includes many aspects affecting performance, like batch normalization, the network architecture, the limited memory parameter or the batch size. Our results show that stochastic quasi-Newton algorithms are efficient and, in some instances, able to outperform the well-known first-order Adam optimizer, run with the optimal combination of its numerous hyperparameters, and the stochastic second-order trust-region STORM algorithm. Full article
Show Figures

Figure 1

28 pages, 1645 KiB  
Article
Transition from Bi- to Quadro-Stability in Models of Population Dynamics and Evolution
by Efim Frisman and Matvey Kulakov
Mathematics 2023, 11(19), 4134; https://doi.org/10.3390/math11194134 - 30 Sep 2023
Cited by 1 | Viewed by 785
Abstract
The article is devoted to a review of bistability and quadro-stability phenomena found in a certain class of mathematical models of population numbers and allele frequency dynamics. The purpose is to generalize the results of studying the transition from bi- to quadro-stability in [...] Read more.
The article is devoted to a review of bistability and quadro-stability phenomena found in a certain class of mathematical models of population numbers and allele frequency dynamics. The purpose is to generalize the results of studying the transition from bi- to quadro-stability in such models. This transition explains the causes and mechanisms for the appearance and maintenance of significant differences in numbers and allele frequencies (genetic divergence) in neighboring sites within a homogeneous habitat or between adjacent generations. Using qualitative methods of differential equations and numerical analysis, we consider bifurcations that lead to bi- and quadro-stability in models of the following biological objects: a system of two coupled populations subject to natural selection; a system of two connected limited populations described by the Bazykin or Ricker model; a population with two age stages and density-dependent regulation. The bistability in these models is caused by the nonlinear growth of a local homogeneous population or the phase bistability of the 2-cycle in populations structured by space or age. We show that there is a series of similar bifurcations of equilibrium states or fixed or periodic points that precede quadro-stability (pitchfork, period-doubling, or saddle-node bifurcation). Full article
(This article belongs to the Section Mathematical Biology)
Show Figures

Figure 1

Back to TopTop