Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = schistosomiasis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5317 KiB  
Article
ARGONAUTE2 Localizes to Sites of Sporocysts in the Schistosome-Infected Snail, Biomphalaria glabrata
by Phong Phan, Conor E. Fogarty, Andrew L. Eamens, Mary G. Duke, Donald P. McManus, Tianfang Wang and Scott F. Cummins
Genes 2024, 15(8), 1023; https://doi.org/10.3390/genes15081023 - 3 Aug 2024
Viewed by 526
Abstract
MicroRNAs (miRNAs) are a class of small regulatory RNA that are generated via core protein machinery. The miRNAs direct gene-silencing mechanisms to mediate an essential role in gene expression regulation. In mollusks, miRNAs have been demonstrated to be required to regulate gene expression [...] Read more.
MicroRNAs (miRNAs) are a class of small regulatory RNA that are generated via core protein machinery. The miRNAs direct gene-silencing mechanisms to mediate an essential role in gene expression regulation. In mollusks, miRNAs have been demonstrated to be required to regulate gene expression in various biological processes, including normal development, immune responses, reproduction, and stress adaptation. In this study, we aimed to establishment the requirement of the miRNA pathway as part of the molecular response of exposure of Biomphalaria glabrata (snail host) to Schistosoma mansoni (trematode parasite). Initially, the core pieces of miRNA pathway protein machinery, i.e., Drosha, DGCR8, Exportin-5, Ran, and Dicer, together with the central RNA-induced silencing complex (RISC) effector protein Argonaute2 (Ago2) were elucidated from the B. glabrata genome. Following exposure of B. glabrata to S. mansoni miracidia, we identified significant expression up-regulation of all identified pieces of miRNA pathway protein machinery, except for Exportin-5, at 16 h post exposure. For Ago2, we went on to show that the Bgl-Ago2 protein was localized to regions surrounding the sporocysts in the digestive gland of infected snails 20 days post parasite exposure. In addition to documenting elevated miRNA pathway protein machinery expression at the early post-exposure time point, a total of 13 known B. glabrata miRNAs were significantly differentially expressed. Of these thirteen B. glabrata miRNAs responsive to S. mansoni miracidia exposure, five were significantly reduced in their abundance, and correspondingly, these five miRNAs were determined to putatively target six genes with significantly elevated expression and that have been previously associated with immune responses in other animal species, including humans. In conclusion, this study demonstrates the central importance of a functional miRNA pathway in snails, which potentially forms a critical component of the immune response of snails to parasite exposure. Further, the data reported in this study provide additional evidence of the complexity of the molecular response of B. glabrata to S. mansoni infection: a molecular response that could be targeted in the future to overcome parasite infection and, in turn, human schistosomiasis. Full article
(This article belongs to the Special Issue Evolution of Non-coding Elements in Genome Biology)
Show Figures

Figure 1

20 pages, 109182 KiB  
Article
In Vivo Antischistosomicidal and Immunomodulatory Effects of Dietary Supplementation with Taraxacum officinale
by Amany Ebrahim Nofal, Amal Mohamed Shaaban, Hany Mohammed Ibrahim, Faten Abouelmagd and Azza Hassan Mohamed
J. Xenobiot. 2024, 14(3), 1003-1022; https://doi.org/10.3390/jox14030056 - 29 Jul 2024
Viewed by 258
Abstract
Bilharziasis is a widespread trematode parasite that poses a severe public health burden. Dandelion (Taraxacum officinale) has several pharmacological and traditional properties critical for treating several hepatic disorders. The present study was designed to assess the potential efficacy of T. officinale [...] Read more.
Bilharziasis is a widespread trematode parasite that poses a severe public health burden. Dandelion (Taraxacum officinale) has several pharmacological and traditional properties critical for treating several hepatic disorders. The present study was designed to assess the potential efficacy of T. officinale root (TOR) dietary supplementation with or without praziquantel (PZQ) against liver and intestinal disorders in mice infected with Schistosoma mansoni. This study was conducted on five groups; G1: uninfected control, G2: untreated S. mansoni-infected mice, G3: infected animals treated with 250 mg/kg PZQ for three alternative days, G4: infected animals were orally administered 600 mg/kg bw TOR daily for 10 days, and G5: infected animals that received both PZQ and TOR as previously described. The current findings after different treatments indicated topographical scanning electron microscopy alterations of male adult worms and a critical reduction in worm burden, ova count, granuloma diameter, hepatic and intestinal histological abnormalities, fibrosis, immunohistochemical expression of CD3+ and CD20+ cells, oxidative stress, and interleukin-10, also upregulation of interferon-gamma, and antioxidant enzymes, when compared to the infected untreated mice. The best results were obtained in mice administered PZQ+TOR together because of their antioxidant properties and ability to promote the host immune response to parasitic infection. Full article
(This article belongs to the Section Natural Products/Herbal Medicines)
Show Figures

Figure 1

13 pages, 2348 KiB  
Article
Effectiveness of Three Sampling Approaches for Optimizing Mapping and Preventive Chemotherapy against Schistosoma mansoni in the Western Part of Côte d’Ivoire
by Jean-Baptiste K. Sékré, Mamadou Ouattara, Nana R. Diakité, Fidèle K. Bassa, Rufin K. Assaré, Jules N. Kouadio, Gaoussou Coulibaly, Agodio Loukouri, Mathieu N. Orsot, Jürg Utzinger and Eliézer K. N’Goran
Trop. Med. Infect. Dis. 2024, 9(7), 159; https://doi.org/10.3390/tropicalmed9070159 - 14 Jul 2024
Viewed by 630
Abstract
The elimination of schistosomiasis as a public health problem by 2030 is one of the main goals put forth in the World Health Organization’s roadmap for neglected tropical diseases. This study aimed to compare different sampling approaches to guide mapping and preventive chemotherapy. [...] Read more.
The elimination of schistosomiasis as a public health problem by 2030 is one of the main goals put forth in the World Health Organization’s roadmap for neglected tropical diseases. This study aimed to compare different sampling approaches to guide mapping and preventive chemotherapy. A cross-sectional parasitological survey was conducted from August to September 2022 in the health districts of Biankouma, Ouaninou, and Touba in the western part of Côte d’Ivoire. The prevalence and intensity of Schistosoma mansoni infection were assessed in children aged 5–14 years using three sampling approaches. The first approach involved a random selection of 50% of the villages in the health districts. The second approach involved a random selection of half of the villages selected in approach 1, thus constituting 25% of the villages in the health district. The third approach consisted of randomly selecting 15 villages from villages selected by approach 2 in each health district. The overall prevalence of S. mansoni was 23.5% (95% confidence interval (CI): 19.9–27.6%), 21.6% (95% CI: 17.1–26.8%), and 18.3% (95% CI: 11.9–27.1%) with the first, second, and third approach, respectively. The respective geometric mean S. mansoni infection intensity was 117.9 eggs per gram of stool (EPG) (95% CI: 109.3–127.3 EPG), 104.6 EPG (95% CI: 93.8–116.6 EPG), and 94.6 EPG (95% CI 79.5–112.7 EPG). We conclude that, although randomly sampling up to 50% of villages in a health district provides more precise population-based prevalence and intensity measures of S. mansoni, randomly selecting only 15 villages in a district characterized by low heterogeneity provides reasonable estimates and is less costly. Full article
Show Figures

Figure 1

23 pages, 2299 KiB  
Review
Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision
by Maria Vittoria Ristori, Valerio Guarrasi, Paolo Soda, Nicola Petrosillo, Fiorella Gurrieri, Umile Giuseppe Longo, Massimo Ciccozzi, Elisabetta Riva and Silvia Angeletti
Genes 2024, 15(7), 908; https://doi.org/10.3390/genes15070908 - 11 Jul 2024
Viewed by 696
Abstract
Emerging infectious diseases (EIDs) are newly emerging and reemerging infectious diseases. The National Institute of Allergy and Infectious Diseases identifies the following as emerging infectious diseases: SARS, MERS, COVID-19, influenza, fungal diseases, plague, schistosomiasis, smallpox, tick-borne diseases, and West Nile fever. The factors [...] Read more.
Emerging infectious diseases (EIDs) are newly emerging and reemerging infectious diseases. The National Institute of Allergy and Infectious Diseases identifies the following as emerging infectious diseases: SARS, MERS, COVID-19, influenza, fungal diseases, plague, schistosomiasis, smallpox, tick-borne diseases, and West Nile fever. The factors that should be taken into consideration are the genetic adaptation of microbial agents and the characteristics of the human host or environment. The new approach to identifying new possible pathogens will have to go through the One Health approach and omics integration data, which are capable of identifying high-priority microorganisms in a short period of time. New bioinformatics technologies enable global integration and sharing of surveillance data for rapid public health decision-making to detect and prevent epidemics and pandemics, ensuring timely response and effective prevention measures. Machine learning tools are being more frequently utilized in the realm of infectious diseases to predict sepsis in patients, diagnose infectious diseases early, and forecast the effectiveness of treatment or the appropriate choice of antibiotic regimen based on clinical data. We will discuss emerging microorganisms, omics techniques applied to infectious diseases, new computational solutions to evaluate biomarkers, and innovative tools that are useful for integrating omics data and electronic medical records data for the clinical management of emerging infectious diseases. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

18 pages, 4931 KiB  
Article
Predicting Climate Change Impact on the Habitat Suitability of the Schistosoma Intermediate Host Oncomelania hupensis in the Yangtze River Economic Belt of China
by Yimiao Li, Mingjia Guo, Jie Jiang, Renlong Dai, Ansa Rebi, Zixuan Shi, Aoping Mao, Jingming Zheng and Jinxing Zhou
Biology 2024, 13(7), 480; https://doi.org/10.3390/biology13070480 - 27 Jun 2024
Viewed by 519
Abstract
Oncomelania hupensis is the exclusive intermediary host of Schistosoma japonicum in China. The alteration of O. hupensis habitat and population distribution directly affects the safety of millions of individuals residing in the Yangtze River Economic Belt (YREB) and the ecological stability of Yangtze [...] Read more.
Oncomelania hupensis is the exclusive intermediary host of Schistosoma japonicum in China. The alteration of O. hupensis habitat and population distribution directly affects the safety of millions of individuals residing in the Yangtze River Economic Belt (YREB) and the ecological stability of Yangtze River Basin. Therefore, it is crucial to analyze the influence of climate change on the distribution of O. hupensis in order to achieve accurate control over its population. This study utilized the MaxEnt model to forecast possible snail habitats by utilizing snail distribution data obtained from historical literature. The following outcomes were achieved: The primary ecological factors influencing the distribution of O. hupensis are elevation, minimum temperature of the coldest month, and precipitation of wettest month. Furthermore, future climate scenarios indicate a decrease in the distribution area and a northward shift of the distribution center for O. hupensis; specifically, those in the upstream will move northeast, while those in the midstream and downstream will move northwest. These changes in suitable habitat area, the average migration distance of distribution centers across different climate scenarios, time periods, and sub-basins within the YREB, result in uncertainty. This study offers theoretical justification for the prevention and control of O. hupensis along the YREB. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

14 pages, 4007 KiB  
Article
Molecular Characterization and Functional Analysis of a Schistosoma mansoni Serine Protease Inhibitor, Smserpin-p46
by Christine N. Lee, Brooke Ashlyn Hall, Leah Sanford and Adebayo J. Molehin
Microorganisms 2024, 12(6), 1164; https://doi.org/10.3390/microorganisms12061164 - 7 Jun 2024
Viewed by 691
Abstract
Serine protease inhibitors are a superfamily of proteins that regulate various physiological processes including fibrinolysis, inflammation and immune responses. In parasite systems, serpins are believed to play important roles in parasite colonization, inhibition of host immune serine proteases and penetration of defensive barriers. [...] Read more.
Serine protease inhibitors are a superfamily of proteins that regulate various physiological processes including fibrinolysis, inflammation and immune responses. In parasite systems, serpins are believed to play important roles in parasite colonization, inhibition of host immune serine proteases and penetration of defensive barriers. However, serpins are less well characterized in schistosomes. In this study, a Schistosoma mansoni serpin (Smserpin-p46) containing a 1360 base pair open reading frame, was cloned, expressed and functionally characterized. Bioinformatics analysis revealed that Smserpin-p46 contains the key residues, structural domains and motifs characteristic of inhibitory serpins. Gene expression profiling demonstrated stage-specific expression of Smserpin-p46 with the highest expression in adult male worms. Recombinant Smserpin-p46 (rSmserpin-p46) inhibited both human neutrophil cathepsin G and elastase, key serine proteases involved in NETosis, a program for the formation of neutrophil extracellular traps. Using specific rabbit antiserum, Smserpin-p46 was detected in soluble worm antigen preparation and was localized to the adult worm tegument. Cumulatively, the expression of Smserpin-p46 on the parasite tegument and its ability to inhibit proteases involved in NETosis highlights the importance of this serpin in parasite-host interactions and encourages its further investigation as a candidate vaccine antigen for the control of schistosomiasis. Full article
(This article belongs to the Section Parasitology)
Show Figures

Figure 1

16 pages, 1937 KiB  
Article
Peptide-Alkoxyamine Drugs: An Innovative Approach to Fight Schistosomiasis: “Digging Their Graves with Their Forks”
by Ange W. Embo-Ibouanga, Michel Nguyen, Jean-Patrick Joly, Mathilde Coustets, Jean-Michel Augereau, Lucie Paloque, Nicolas Vanthuyne, Raphaël Bikanga, Anne Robert, Françoise Benoit-Vical, Gérard Audran, Philippe Mellet, Jérôme Boissier and Sylvain R. A. Marque
Pathogens 2024, 13(6), 482; https://doi.org/10.3390/pathogens13060482 - 6 Jun 2024
Cited by 1 | Viewed by 686
Abstract
The expansion of drug resistant parasites sheds a serious concern on several neglected parasitic diseases. Our recent results on cancer led us to envision the use of peptide-alkoxyamines as a highly selective and efficient new drug against schistosome adult worms, the etiological agents [...] Read more.
The expansion of drug resistant parasites sheds a serious concern on several neglected parasitic diseases. Our recent results on cancer led us to envision the use of peptide-alkoxyamines as a highly selective and efficient new drug against schistosome adult worms, the etiological agents of schistosomiasis. Indeed, the peptide tag of the hybrid compounds can be hydrolyzed by worm’s digestive enzymes to afford a highly labile alkoxyamine which homolyzes spontaneously and instantaneously into radicals—which are then used as a drug against Schistosome adult parasites. This approach is nicely summarized as digging their graves with their forks. Several hybrid peptide-alkoxyamines were prepared and clearly showed an activity: two of the tested compounds kill 50% of the parasites in two hours at a concentration of 100 µg/mL. Importantly, the peptide and alkoxyamine fragments that are unable to generate alkyl radicals display no activity. This strong evidence validates the proposed mechanism: a specific activation of the prodrugs by the parasite proteases leading to parasite death through in situ alkyl radical generation. Full article
Show Figures

Figure 1

8 pages, 836 KiB  
Systematic Review
Human Placental Schistosomiasis—A Systematic Review of the Literature
by Jacob Gerstenberg, Sasmita Mishra, Martha Holtfreter, Joachim Richter, Saskia Dede Davi, Dearie Glory Okwu, Michael Ramharter, Johannes Mischlinger and Benjamin T. Schleenvoigt
Pathogens 2024, 13(6), 470; https://doi.org/10.3390/pathogens13060470 - 3 Jun 2024
Viewed by 644
Abstract
Background: Schistosome egg deposition in pregnant women may affect the placenta of infected mothers and cause placental schistosomiasis (PS). Histopathological examination of placental tissue is an inadequate detection method due to low sensitivity. So far, there has not been any systematic review on [...] Read more.
Background: Schistosome egg deposition in pregnant women may affect the placenta of infected mothers and cause placental schistosomiasis (PS). Histopathological examination of placental tissue is an inadequate detection method due to low sensitivity. So far, there has not been any systematic review on PS. Methods: We conducted a systematic literature search on PubMed, EMBASE, and Medline and included all publications that reported microscopically confirmed cases of PS, as well as the relevant secondary literature found in the citations of the primarily included publications. Results: Out of 113 abstracts screened we found a total of 8 publications describing PS with a total of 92 cases describing egg deposition of dead and/or viable eggs and worms of S. haematobium and S. mansoni in placental tissue. One cross-sectional study investigating the prevalence of PS and its association with adverse birth outcomes, found 22% of placentas to be infested using a maceration technique but only <1% using histologic examination. Additionally, no direct link to deleterious pregnancy outcomes could be shown. Conclusions: PS is a highly unattended and underdiagnosed condition in endemic populations, due to a lack of awareness as well as low sensitivity of histopathological examinations. However, PS may play an important role in mediating or reinforcing adverse birth outcomes (ABO) such as fetal growth restriction (FGR) in maternal schistosomiasis, possibly by placental inflammation. Full article
(This article belongs to the Special Issue Schistosomiasis: From Immunopathology to Vaccines)
Show Figures

Figure 1

12 pages, 4581 KiB  
Article
Exploring the Adaptation of Bulinus senegalensis and Bulinus umbilicatus to the Dry and Rainy Season in Ephemeral Pond in Niakhar (Senegal), an Area of Seasonal Transmission of Urogenital Schistosomiasis
by Diara Sy, Bruno Senghor, Cheikh Sokhna, Mamadou Aliou Diallo, Amélé Nyedzie Wotodjo, Doudou Sow and Souleymane Doucoure
Trop. Med. Infect. Dis. 2024, 9(6), 121; https://doi.org/10.3390/tropicalmed9060121 - 22 May 2024
Viewed by 684
Abstract
Bulinus snails surviving drought play a key role in the seasonal transmission of urogenital schistosomiasis, although our knowledge of their adaptation to dry season is still limited. We investigated the survival dynamic and infestation by the Schistosoma haematobium of Bulinus snails during the [...] Read more.
Bulinus snails surviving drought play a key role in the seasonal transmission of urogenital schistosomiasis, although our knowledge of their adaptation to dry season is still limited. We investigated the survival dynamic and infestation by the Schistosoma haematobium of Bulinus snails during the dry and rainy seasons in a single pond in an area of seasonal schistosomiasis transmission in Senegal. During the rainy season, 98 (94.23%) B. senegalensis and six (5.76%) B. umbilicatus were collected, respectively. In the dry season, B. umbilicatus outnumbered B. senegalensis, but all five (100%) B. senegalensis collected were viable and alive after the interruption of aestivation by immersion in water, while only 7 of 24 (29.16%) B. umbilicatus collected emerged from their dormant state. The rate of infestation with S. haeamatobium during the rainy season was 18.2% (19/104), while all the viable snails collected during the dry season were negative. B. senegalensis and B. umbilicatus have different seasonal dynamics with no evidence of maintaining S. haematobium infestation during the drought. Further studies including more survey sites and taking account both snails biology and ecological conditions are needed to better understand snail adaptation to seasonal changes and their ability to maintain S. haeamatobium infestation during drought. Full article
(This article belongs to the Section Neglected and Emerging Tropical Diseases)
Show Figures

Figure 1

11 pages, 253 KiB  
Article
Evaluating the Performance of FlukeCatcher at Detecting Urogenital Schistosomiasis
by Louis Fok, Berhanu Erko, David Brett-Major, Abebe Animut, M. Jana Broadhurst, Daisy Dai, John Linville, Bruno Levecke, Yohannes Negash and Abraham Degarege
Diagnostics 2024, 14(10), 1037; https://doi.org/10.3390/diagnostics14101037 - 17 May 2024
Viewed by 625
Abstract
Urine filtration microscopy (UFM) lacks sensitivity in detecting low-intensity Schistosoma haematobium infections. In pursuit of a superior alternative, this study evaluated the performance of FlukeCatcher microscopy (FCM) at detecting S. haematobium eggs in human urine samples. Urine samples were collected from 572 school-age [...] Read more.
Urine filtration microscopy (UFM) lacks sensitivity in detecting low-intensity Schistosoma haematobium infections. In pursuit of a superior alternative, this study evaluated the performance of FlukeCatcher microscopy (FCM) at detecting S. haematobium eggs in human urine samples. Urine samples were collected from 572 school-age children in Afar, Ethiopia in July 2023 and examined using UFM and FCM approaches. Using the combined UFM and FCM results as a reference, the sensitivity, negative predictive value, and agreement levels for the two testing methods in detecting S. haematobium eggs in urine samples were calculated. The sensitivity and negative predictive value of detecting S. haematobium eggs in urine samples for FCM was 84% and 97%, respectively, compared to 65% and 93% for UFM. The FCM test results had an agreement of 61% with the UFM results, compared to 90% with the combined results of FCM and UFM. However, the average egg count estimates were lower when using FCM (6.6 eggs per 10 mL) compared to UFM (14.7 eggs per 10 mL) (p < 0.0001). Incorporating FCM into specimen processing could improve the diagnosis of S. haematobium infection but may underperform in characterizing the intensity of infection. Full article
(This article belongs to the Special Issue Urinary Tract Infections: Diagnosis and Management)
23 pages, 2697 KiB  
Article
Evaluation of Silybin Nanoparticles against Liver Damage in Murine Schistosomiasis mansoni Infection
by Daniel Figueiredo Vanzan, Ester Puna Goma, Fernanda Resende Locatelli, Thiago da Silva Honorio, Priscila de Souza Furtado, Carlos Rangel Rodrigues, Valeria Pereira de Sousa, Hilton Antônio Mata dos Santos, Flávia Almada do Carmo, Alice Simon, Alexandre dos Santos Pyrrho, António José Ribeiro and Lucio Mendes Cabral
Pharmaceutics 2024, 16(5), 618; https://doi.org/10.3390/pharmaceutics16050618 - 4 May 2024
Viewed by 1143
Abstract
Silybin (SIB) is a hepatoprotective drug known for its poor oral bioavailability, attributed to its classification as a class IV drug with significant metabolism during the first-pass effect. This study explored the potential of solid lipid nanoparticles with (SLN-SIB-U) or without (SLN-SIB) ursodeoxycholic [...] Read more.
Silybin (SIB) is a hepatoprotective drug known for its poor oral bioavailability, attributed to its classification as a class IV drug with significant metabolism during the first-pass effect. This study explored the potential of solid lipid nanoparticles with (SLN-SIB-U) or without (SLN-SIB) ursodeoxycholic acid and polymeric nanoparticles (PN-SIB) as delivery systems for SIB. The efficacy of these nanosystems was assessed through in vitro studies using the GRX and Caco-2 cell lines for permeability and proliferation assays, respectively, as well as in vivo experiments employing a murine model of Schistosomiasis mansoni infection in BALB/c mice. The mean diameter and encapsulation efficiency of the nanosystems were as follows: SLN-SIB (252.8 ± 4.4 nm, 90.28 ± 2.2%), SLN-SIB-U (252.9 ± 14.4 nm, 77.05 ± 2.8%), and PN-SIB (241.8 ± 4.1 nm, 98.0 ± 0.2%). In the proliferation assay with the GRX cell line, SLN-SIB and SLN-SIB-U exhibited inhibitory effects of 43.09 ± 5.74% and 38.78 ± 3.78%, respectively, compared to PN-SIB, which showed no inhibitory effect. Moreover, SLN-SIB-U demonstrated a greater apparent permeability coefficient (25.82 ± 2.2) than PN-SIB (20.76 ± 0.1), which was twice as high as that of SLN-SIB (11.32 ± 4.6) and pure SIB (11.28 ± 0.2). These findings suggest that solid lipid nanosystems hold promise for further in vivo investigations. In the murine model of acute-phase Schistosomiasis mansoni infection, both SLN-SIB and SLN-SIB-U displayed hepatoprotective effects, as evidenced by lower alanine amino transferase values (22.89 ± 1.6 and 23.93 ± 2.4 U/L, respectively) than those in control groups I (29.55 ± 0.7 U/L) and I+SIB (34.29 ± 0.3 U/L). Among the prepared nanosystems, SLN-SIB-U emerges as a promising candidate for enhancing the pharmacokinetic properties of SIB. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

22 pages, 9280 KiB  
Article
In Silico Comparison of Bioactive Compounds Characterized from Azadirachta indica with an FDA-Approved Drug against Schistosomal Agents: New Insight into Schistosomiasis Treatment
by Babatunji Emmanuel Oyinloye, David Ezekiel Shamaki, Emmanuel Ayodeji Agbebi, Sunday Amos Onikanni, Chukwudi Sunday Ubah, Raphael Taiwo Aruleba, Tran Nhat Phong Dao, Olutunmise Victoria Owolabi, Olajumoke Tolulope Idowu, Makhosazana Siduduzile Mathenjwa-Goqo, Deborah Tolulope Esan, Basiru Olaitan Ajiboye and Olaposi Idowu Omotuyi
Molecules 2024, 29(9), 1909; https://doi.org/10.3390/molecules29091909 - 23 Apr 2024
Viewed by 895
Abstract
The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to [...] Read more.
The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of −10.19 and −45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug. Full article
Show Figures

Figure 1

23 pages, 6306 KiB  
Article
Long Non-Coding RNA Levels Are Modulated in Schistosoma mansoni following In Vivo Praziquantel Exposure
by Pedro Jardim Poli, Agatha Fischer-Carvalho, Ana Carolina Tahira, John D. Chan, Sergio Verjovski-Almeida and Murilo Sena Amaral
Non-Coding RNA 2024, 10(2), 27; https://doi.org/10.3390/ncrna10020027 - 19 Apr 2024
Cited by 1 | Viewed by 1349
Abstract
Schistosomiasis is a disease caused by trematodes of the genus Schistosoma that affects over 200 million people worldwide. For decades, praziquantel (PZQ) has been the only available drug to treat the disease. Despite recent discoveries that identified a transient receptor ion channel as [...] Read more.
Schistosomiasis is a disease caused by trematodes of the genus Schistosoma that affects over 200 million people worldwide. For decades, praziquantel (PZQ) has been the only available drug to treat the disease. Despite recent discoveries that identified a transient receptor ion channel as the target of PZQ, schistosome response to this drug remains incompletely understood, since effectiveness relies on other factors that may trigger a complex regulation of parasite gene expression. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that play important roles in S. mansoni homeostasis, reproduction, and fertility. Here, we show that in vivo PZQ treatment modulates lncRNA levels in S. mansoni. We re-analyzed public RNA-Seq data from mature and immature S. mansoni worms treated in vivo with PZQ and detected hundreds of lncRNAs differentially expressed following drug exposure, many of which are shared among mature and immature worms. Through RT-qPCR, seven out of ten selected lncRNAs were validated as differentially expressed; interestingly, we show that these lncRNAs are not adult worm stage-specific and are co-expressed with PZQ-modulated protein-coding genes. By demonstrating that parasite lncRNA expression levels alter in response to PZQ, this study unravels an important step toward elucidating the complex mechanisms of S. mansoni response to PZQ. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

28 pages, 505 KiB  
Review
Transmission Modelling for Human Non-Zoonotic Schistosomiasis Incorporating Vaccination: Guiding Decision- and Policymaking
by Ursula Panzner
Parasitologia 2024, 4(2), 101-128; https://doi.org/10.3390/parasitologia4020010 - 15 Apr 2024
Viewed by 923
Abstract
Schistosomiasis, acquired by skin-penetrating cercariae of dioecious digenean schistosomes during freshwater contact, afflicts nearly 260 and 440 million people with active infections and residual morbidity, respectively. About 10 million women at reproductive age contract schistosomiasis during gestation every year. Acute schistosomiasis is characterized [...] Read more.
Schistosomiasis, acquired by skin-penetrating cercariae of dioecious digenean schistosomes during freshwater contact, afflicts nearly 260 and 440 million people with active infections and residual morbidity, respectively. About 10 million women at reproductive age contract schistosomiasis during gestation every year. Acute schistosomiasis is characterized by pre-patent pro-inflammatory CD4+ T-helper 1 or CD4+ Th1/T-helper 17 reactivity against immature schistosomulae. Chronic schistosomiasis is dominated by post-patent anti-inflammatory CD4+ T-helper 2 reactivity against ova epitopes. Flukes co-exist in immunocompetent definitive hosts as they are capable of evading their defense mechanisms. Preventive measures should be complemented by vaccination, inducing long-term protection against transmission, infection, and disease recurrence, given the latest advancements in schistosomal vaccines. Vaccines become pivotal when considering constraints of chemotherapy, i.e., lack of protection against re-infection, and evolving resistance or reduced sensitivity. Transmission models for human non-zoonotic schistosomiasis incorporating vaccination available in PubMed, Embase and Web of Science up to 31 December 2023 are presented. Besides conceptual model differences, predictions meant to guide decision- and policymaking reveal continued worm harboring that facilitates transmission besides residual infections. In addition, increased susceptibility to re-infection and rebound morbidity, both shifted to later life stages following the intervention, are forecasted. Consequently, a vaccination schedule is pivotal that considers the optimal age for initial immunization, i.e., pre-schoolchildren or schoolchildren in a cohort-based or population-based manner, while incorporating potential non-adherers promoting ongoing transmission. Longevity over magnitude of vaccine protection to antigenic schistosomal moieties is crucial. Accounting for pre-acquired immunity from natural exposure, in utero priming in addition to herd immunity, and induced by chemotherapy is crucial. Combining, as a multi-component approach, long-term effects of vaccination with short-term effects of chemotherapy as regular repeated vaccine-linked therapy seems most promising to achieve WHO’s endpoints of transmission elimination and morbidity control. Full article
15 pages, 10685 KiB  
Article
Dysregulated Glucuronidation of Bilirubin Exacerbates Liver Inflammation and Fibrosis in Schistosomiasis Japonica through the NF-κB Signaling Pathway
by Qingkai Xue, Yuyan Wang, Yiyun Liu, Haiyong Hua, Xiangyu Zhou, Yongliang Xu, Ying Zhang, Chunrong Xiong, Xinjian Liu, Kun Yang and Yuzheng Huang
Pathogens 2024, 13(4), 287; https://doi.org/10.3390/pathogens13040287 - 28 Mar 2024
Viewed by 1259
Abstract
Hepatic fibrosis is an important pathological manifestation of chronic schistosome infection. Patients with advanced schistosomiasis show varying degrees of abnormalities in liver fibrosis indicators and bilirubin metabolism. However, the relationship between hepatic fibrosis in schistosomiasis and dysregulated bilirubin metabolism remains unclear. In this [...] Read more.
Hepatic fibrosis is an important pathological manifestation of chronic schistosome infection. Patients with advanced schistosomiasis show varying degrees of abnormalities in liver fibrosis indicators and bilirubin metabolism. However, the relationship between hepatic fibrosis in schistosomiasis and dysregulated bilirubin metabolism remains unclear. In this study, we observed a positive correlation between total bilirubin levels and the levels of ALT, AST, LN, and CIV in patients with advanced schistosomiasis. Additionally, we established mouse models at different time points following S. japonicum infection. As the infection time increased, liver fibrosis escalated, while liver UGT1A1 consistently exhibited a low expression, indicating impaired glucuronidation of bilirubin metabolism in mice. In vitro experiments suggested that SEA may be a key inhibitor of hepatic UGT1A1 expression after schistosome infection. Furthermore, a high concentration of bilirubin activated the NF-κB signaling pathway in L-O2 cells in vitro. These findings suggested that the dysregulated glucuronidation of bilirubin caused by S. japonicum infection may play a significant role in schistosomiasis liver fibrosis through the NF-κB signaling pathway. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

Back to TopTop