Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (248)

Search Parameters:
Keywords = shock absorber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 23655 KiB  
Article
Development and Usability Evaluation of Augmented Reality Content for Light Maintenance Training of Air Spring for Electric Multiple Unit
by Kyung-Sik Kim and Chul-Su Kim
Appl. Sci. 2024, 14(17), 7702; https://doi.org/10.3390/app14177702 - 31 Aug 2024
Viewed by 640
Abstract
The air spring for railway vehicles uses the air pressure inside the bellows to absorb vibration and shock to improve ride comfort and adjust the height of the underframe with a leveling valve to control stable driving of the train. This study developed [...] Read more.
The air spring for railway vehicles uses the air pressure inside the bellows to absorb vibration and shock to improve ride comfort and adjust the height of the underframe with a leveling valve to control stable driving of the train. This study developed augmented reality content that proposes a novel visual technology to effectively support the training of air spring maintenance tasks. In this study, a special effect algorithm that displays the dispersion and diffusion of fluid, and an algorithm that allows objects to be rotated at various angles, were proposed to increase the visual learning effect of fluid flow for maintenance. The FDG algorithm can increase the training effect by visualizing the leakage of air at a specific location when the air spring is damaged. In addition, the OAR algorithm allows an axisymmetric model, which is difficult to rotate by gestures, to be rotated at various angles, using a touch cube. Using these algorithms, maintenance personnel can effectively learn complex maintenance tasks. The UMUX and CSUQ surveys were conducted with 40 railway maintenance workers to evaluate the effectiveness of the developed educational content. The results showed that the UMUX, across 4 items, averaged as score of 81.56. Likewise, the CSUQ survey score, consisting of 19 questions in 4 categories, was very high, at 80.83. These results show that this AR content is usable for air spring maintenance and field training support. Full article
(This article belongs to the Special Issue Application of Intelligent Human-Computer Interaction)
Show Figures

Figure 1

17 pages, 5752 KiB  
Article
Theoretical and Experimental Research on an Optimal Control for a Magnetorheological Shock Mitigation System
by Mukai Wang, Duhui Lu, Yeyin Xu, Yunfei Guo, Bing Li and Norman M. Wereley
Appl. Sci. 2024, 14(16), 7317; https://doi.org/10.3390/app14167317 - 20 Aug 2024
Viewed by 325
Abstract
Vibration and shock control systems are of vital importance to modern vehicles when incorporating crashworthiness goals and enhancing occupant safety to protect avionics or electronics during survivable crash events. The study proposes a method denoted as the optimal generalized Bingham number (GBN) control [...] Read more.
Vibration and shock control systems are of vital importance to modern vehicles when incorporating crashworthiness goals and enhancing occupant safety to protect avionics or electronics during survivable crash events. The study proposes a method denoted as the optimal generalized Bingham number (GBN) control to improve the soft-landing control accuracy of a drop-induced shock mitigation system employing a magnetorheological shock absorber (MREA). Based on the theoretical and experimental analysis of the damping force characteristics of the MREA, the dynamics of a single-degree-of-freedom shock mitigation system are established, and the GBN is defined with consideration of quadratic damping. The optimal GBN control strategy for a magnetorheological shock mitigation system is proposed to achieve a soft landing. The deceleration, velocity, and displacement formulas of the payload are derived, and the dynamic response of the magnetorheological shock mitigation system, under different GBNs, is analyzed. In terms of soft-landing control accuracy, it is shown that the optimal GBN control strategy performs better for a linear stroke MREA when the control algorithm is based on quadratic damping rather than linear damping. Full article
Show Figures

Figure 1

18 pages, 4821 KiB  
Article
The Stiffness and Damping Characteristics of a Rubber-Based SMA Composite Shock Absorber with a Hyper-Elastic SMA-Constitutive Model Considering the Loading Rate
by Yizhe Huang, Huizhen Zhang, Qiyuan Fan, Qibai Huang, Lefei Shao, Xin Zhan and Jun Wang
Materials 2024, 17(16), 4076; https://doi.org/10.3390/ma17164076 - 16 Aug 2024
Viewed by 474
Abstract
Shock absorbers are essential in enhancing vehicle ride comfort by mitigating vibrations. However, traditional rubber shock absorbers are constrained by their fixed stiffness and damping properties, limiting their adaptability to varying loads and thus affecting the ride comfort, especially under extreme road conditions. [...] Read more.
Shock absorbers are essential in enhancing vehicle ride comfort by mitigating vibrations. However, traditional rubber shock absorbers are constrained by their fixed stiffness and damping properties, limiting their adaptability to varying loads and thus affecting the ride comfort, especially under extreme road conditions. Shape Memory Alloys (SMAs), known for their intelligent material properties, offer a unique solution by adjusting stiffness and damping in response to temperature changes or strain rates, making them ideal for advanced vibration control applications. This study builds upon the Auricchio constitutive model to propose an enhanced SMA hyper-elastic constitutive model that accounts for different loading rates. This new model elucidates the impact of loading rates on the stiffness and damping characteristics of SMAs. Additionally, we introduce an innovative circular rubber-based SMA composite vibration reduction structure. Through a parameterized model and finite element simulation, we comprehensively analyze the stiffness and damping properties of the composite damper under various loading rates and harmonic excitations. Our findings suggest a novel approach to improving the vehicle ride comfort, offering significant potential for engineering applications and practical value. Full article
Show Figures

Figure 1

19 pages, 2882 KiB  
Review
Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus
by Luca Ambrosio, Jordy Schol, Clara Ruiz-Fernández, Shota Tamagawa, Kieran Joyce, Akira Nomura, Elisabetta de Rinaldis, Daisuke Sakai, Rocco Papalia, Gianluca Vadalà and Vincenzo Denaro
J. Dev. Biol. 2024, 12(3), 18; https://doi.org/10.3390/jdb12030018 - 3 Jul 2024
Cited by 1 | Viewed by 801
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue [...] Read more.
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc’s load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments. Full article
Show Figures

Figure 1

16 pages, 6037 KiB  
Article
Improved Multi-Body Dynamic Simulation of Landing Gear Drop Test Incorporating Structural Flexibility and Bearing Contact
by Wenbin Liu and Youshan Wang
Aerospace 2024, 11(7), 543; https://doi.org/10.3390/aerospace11070543 - 2 Jul 2024
Viewed by 770
Abstract
The investigation of multi-body dynamics (MBD) modeling for landing gear drop tests is a hot topic in the realm of landing gear design. The current results were primarily focused on the multi-rigid body simulation or a simple multi-flexible body simulation, with little regard [...] Read more.
The investigation of multi-body dynamics (MBD) modeling for landing gear drop tests is a hot topic in the realm of landing gear design. The current results were primarily focused on the multi-rigid body simulation or a simple multi-flexible body simulation, with little regard for the correctness of longitudinal loads and their experimental confirmation, particularly wheel–axle loads. Based on a genuine oleo-pneumatic landing gear drop test of a large civil aircraft, enhanced multi-body dynamics simulation research is carried out, considering the structural flexibility and bearing support by adopting flexible multi-bodies modeling and rigid-flex coupling contacts. When compared to the test data, which purposefully measured the longitudinal wheel–axle loads, the simulation results show that the loads, shock absorber compression, and shock absorber inner pressures are all within good agreement. Furthermore, the influence of structural stiffness and bearing contact was investigated by adjusting the model settings to confirm their importance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 3065 KiB  
Article
Research on Efficient Suspension Vibration Reduction Configuration for Effectively Reducing Energy Consumption
by Huixin Song, Mingming Dong and Liang Gu
Sustainability 2024, 16(10), 4208; https://doi.org/10.3390/su16104208 - 17 May 2024
Viewed by 692
Abstract
Reducing vehicle energy consumption is crucial for sustainable development, especially in the context of energy crises and environmental pollution. Energy regenerative suspension offers a promising solution, yet its practical implementation faces challenges like inertial mass issues, cost, and reliability concerns. This study introduces [...] Read more.
Reducing vehicle energy consumption is crucial for sustainable development, especially in the context of energy crises and environmental pollution. Energy regenerative suspension offers a promising solution, yet its practical implementation faces challenges like inertial mass issues, cost, and reliability concerns. This study introduces a novel suspension configuration, optimizing shock absorber technology with energy regenerative principles. The objective is to drastically cut energy consumption. Through a frequency domain analysis, this study identifies the root causes of increased energy consumption and worsened vibration in traditional suspensions. This study presents a comparative analysis of the frequency-domain characteristics between the novel suspension configuration and the traditional one. This study reveals that the new configuration exhibits a low-pass filtering effect on the shock absorber’s velocity, effectively minimizing vibrations in the low-frequency range, while mitigating their impact in the high-frequency range. This approach mitigates the trade-off between increased energy consumption and worsened vibration in the high-frequency range, making it a promising solution. Simulations show that this configuration significantly reduces acceleration by 7.04% and suspension power consumption by 10.47% at 60 km/h on the D-level road, while maintaining handling stability. This makes it a promising candidate for future energy-efficient suspension systems. Full article
(This article belongs to the Topic Advanced Electric Vehicle Technology, 2nd Volume)
Show Figures

Figure 1

22 pages, 412 KiB  
Article
Sustainability under Active Inference
by Mahault Albarracin, Maxwell Ramstead, Riddhi J. Pitliya, Ines Hipolito, Lancelot Da Costa, Maria Raffa, Axel Constant and Sarah Grace Manski
Systems 2024, 12(5), 163; https://doi.org/10.3390/systems12050163 - 4 May 2024
Viewed by 2612
Abstract
In this paper, we explore the known connection among sustainability, resilience, and well-being within the framework of active inference. Initially, we revisit how the notions of well-being and resilience intersect within active inference before defining sustainability. We adopt a holistic concept of sustainability [...] Read more.
In this paper, we explore the known connection among sustainability, resilience, and well-being within the framework of active inference. Initially, we revisit how the notions of well-being and resilience intersect within active inference before defining sustainability. We adopt a holistic concept of sustainability denoting the enduring capacity to meet needs over time without depleting crucial resources. It extends beyond material wealth to encompass community networks, labor, and knowledge. Using the free energy principle, we can emphasize the role of fostering resource renewal, harmonious system–entity exchanges, and practices that encourage self-organization and resilience as pathways to achieving sustainability both as an agent and as a part of a collective. We start by connecting active inference with well-being, building on existing work. We then attempt to link resilience with sustainability, asserting that resilience alone is insufficient for sustainable outcomes. While crucial for absorbing shocks and stresses, resilience must be intrinsically linked with sustainability to ensure that adaptive capacities do not merely perpetuate existing vulnerabilities. Rather, it should facilitate transformative processes that address the root causes of unsustainability. Sustainability, therefore, must manifest across extended timescales and all system strata, from individual components to the broader system, to uphold ecological integrity, economic stability, and social well-being. We explain how sustainability manifests at the level of an agent and then at the level of collectives and systems. To model and quantify the interdependencies between resources and their impact on overall system sustainability, we introduce the application of network theory and dynamical systems theory. We emphasize the optimization of precision or learning rates through the active inference framework, advocating for an approach that fosters the elastic and plastic resilience necessary for long-term sustainability and abundance. Full article
15 pages, 28320 KiB  
Article
Study of Orifice Design on Oleo-Pneumatic Shock Absorber
by Paulo A. S. F. Silva, Ahmed A. Sheikh Al-Shabab, Panagiotis Tsoutsanis and Martin Skote
Fluids 2024, 9(5), 108; https://doi.org/10.3390/fluids9050108 - 3 May 2024
Viewed by 1209
Abstract
Aircraft oil-strut shock absorbers rely on orifice designs to control fluid flow and optimize damping performance. However, the complex nature of cavitating flows poses significant challenges in predicting the influence of orifice geometry on energy dissipation and system reliability. This study presents a [...] Read more.
Aircraft oil-strut shock absorbers rely on orifice designs to control fluid flow and optimize damping performance. However, the complex nature of cavitating flows poses significant challenges in predicting the influence of orifice geometry on energy dissipation and system reliability. This study presents a comprehensive computational fluid dynamics (CFD) analysis of the effects of circular, rectangular, semicircular, and cutback orifice profiles on the internal flow characteristics and damping behavior of oleo-pneumatic shock absorbers. High-fidelity simulations reveal that the rectangular orifice generates higher damping pressures and velocity magnitude than those generated by others designs, while the semicircular shape reduces cavitation inception and exhibits a more gradual pressure recovery. Furthermore, the study highlights the importance of considering both geometric and thermodynamic factors in the design and analysis of cavitating flow systems, as liquid properties and vapor pressure significantly impact bubble growth and collapse behavior. Increasing the orifice length had a negligible impact on damping but moderately raised orifice velocities. This research provides valuable insights for optimizing shock absorber performance across a range of operating conditions, ultimately enhancing vehicle safety and passenger comfort. Full article
(This article belongs to the Special Issue Turbulent Flow, 2nd Edition)
Show Figures

Figure 1

21 pages, 343 KiB  
Article
Toward a Sustainable Development of E-Commerce in EU: The Role of Education, Internet Infrastructure, Income, and Economic Freedom on E-Commerce Growth
by Nicolae Marius Jula, Gabriel Ilie Staicu, Liviu Cătălin Moraru and Dumitru Alexandru Bodislav
Sustainability 2024, 16(9), 3809; https://doi.org/10.3390/su16093809 - 1 May 2024
Viewed by 1645
Abstract
The emergence of e-commerce reshaped the traditional trade models, also playing a significant role in meeting the UN sustainable development goals. According to the UN, sustained growth and social development must include resilient infrastructure, foster innovation, allow for better access to information and [...] Read more.
The emergence of e-commerce reshaped the traditional trade models, also playing a significant role in meeting the UN sustainable development goals. According to the UN, sustained growth and social development must include resilient infrastructure, foster innovation, allow for better access to information and communications technology, and universal and affordable internet infrastructure. This study explores a multidimensional analysis of e-commerce development in the EU generated by the following factors: education, internet infrastructure, income, and economic freedom. We use an ARDL econometric model and Eurostat data. Additionally, we analyze the time responsiveness of e-commerce growth to changes in these factors. In the long run, our findings identify a stable and positive relationship between e-commerce and all these factors. However, in the short run, our results illustrate significant dynamics between two variables and e-commerce. Specifically, the level of internet access and the percentage of individuals who use the internet daily exhibit a positive short-run impact on e-commerce sales, with the system absorbing shocks within a short period. This research advocates for targeted policies that support innovation, fair competition, and consumer protection in the digital economy. This research provides valuable guidance for policymakers and stakeholders in improving the institutional framework to promote a sustainable development of e-commerce in the EU. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
32 pages, 22322 KiB  
Article
Enhanced Energy Absorption with Bioinspired Composite Triply Periodic Minimal Surface Gyroid Lattices Fabricated via Fused Filament Fabrication (FFF)
by Dawit Bogale Alemayehu and Masahiro Todoh
J. Manuf. Mater. Process. 2024, 8(3), 86; https://doi.org/10.3390/jmmp8030086 - 23 Apr 2024
Cited by 1 | Viewed by 1713
Abstract
Bio-inspired gyroid triply periodic minimum surface (TPMS) lattice structures have been the focus of research in automotive engineering because they can absorb a lot of energy and have wider plateau ranges. The main challenge is determining the optimal energy absorption capacity and accurately [...] Read more.
Bio-inspired gyroid triply periodic minimum surface (TPMS) lattice structures have been the focus of research in automotive engineering because they can absorb a lot of energy and have wider plateau ranges. The main challenge is determining the optimal energy absorption capacity and accurately capturing plastic plateau areas using finite element analysis (FEA). Using nTop’s Boolean subtraction method, this study combined walled TPMS gyroid structures with a normal TPMS gyroid lattice. This made a composite TPMS gyroid lattice (CTG) with relative densities ranging from 14% to 54%. Using ideaMaker 4.2.3 (3DRaise Pro 2) software and the fused deposition modeling (FDM) Raise3D Pro 2 3D printer to print polylactic acid (PLA) bioplastics in 1.75 mm filament made it possible to slice computer-aided design (CAD) models and fabricate 36 lattice samples precisely using a layer-by-layer technique. Shimadzu 100 kN testing equipment was utilized for the mechanical compression experiments. The finite element approach validates the results of mechanical compression testing. Further, a composite CTG was examined using a field emission scanning electron microscope (FE-SEM) before and after compression testing. The composite TPMS gyroid lattice showed potential as shock absorbers for vehicles with relative densities of 33%, 38%, and 54%. The Gibson–Ashby model showed that the composite TPMS gyroid lattice deformed mainly by bending, and the size effect was seen when the relative densities were less than 15%. The lattice’s relative density had a significant impact on its ability to absorb energy. The research also explored the use of these innovative foam-like composite TPMS gyroid lattices in high-speed crash box scenarios to potentially enhance vehicle safety and performance. The structures have tremendous potential to improve vehicle safety by acting as advanced shock absorbers, which are particularly effective at higher relative densities. Full article
Show Figures

Figure 1

19 pages, 10334 KiB  
Article
Infrared Radiation-Assisted Non-Pressure Sintering of Micron-Sized Silver for Power Electronic Packaging
by Renhao Song, Fang Yuan, Yue Su, Shuo Wang and Xu Zhang
Electronics 2024, 13(8), 1492; https://doi.org/10.3390/electronics13081492 - 14 Apr 2024
Viewed by 948
Abstract
In recent years, silver sintering has gained increasing attention in high-power density electronic packaging due to its characteristics such as a high melting point and excellent thermal and electrical conductivity. Micron-sized silver sintering offers a lower cost, but requires a longer processing time [...] Read more.
In recent years, silver sintering has gained increasing attention in high-power density electronic packaging due to its characteristics such as a high melting point and excellent thermal and electrical conductivity. Micron-sized silver sintering offers a lower cost, but requires a longer processing time and additional pressure, which constrains its application. This paper presents a low-cost sintering process using infrared radiation (IR) as a heat source. By leveraging the unique properties of IR, the process achieves selective heating. The thermal energy can be mainly absorbed by the specific areas requiring sintering. This innovative approach eliminates the need for external pressure during the sintering process. This feature not only simplifies the overall process but also reduces the processing time required for sintering. The silver joints obtained from IR sintering process for 45 min achieved an average chip shear strength of 38 MPa at a temperature of 225 °C, which is higher than the strength of silver joints obtained from a traditional sintering process for 2 h. Additionally, the IR-sintered silver joints have a resistivity of 9.83 × 10−5 Ω·cm and scanning electron microscope (SEM) images of the joints reveal that the sintered joints obtained through the IR sintering process exhibit less porosity compared to joints obtained through a traditional sintering process. The porosity of the IR silver joints at 225 °C is 6.4% and does not change even after 3000 cycles of thermal shock testing, showing outstanding reliability. A GaN power device using IR silver joint also performed better in thermal and electrical performance testing, showing promising potential for the application of micro-silver paste in power electronic devices. Full article
Show Figures

Figure 1

16 pages, 3458 KiB  
Review
Mathematical Analysis of the Electromotive Induced Force in a Magnetically Damped Suspension
by Susana Aberturas, Juan Diego Aguilera, José Luis Olazagoitia, Miguel Ángel García and Antonio Hernando
Mathematics 2024, 12(7), 1004; https://doi.org/10.3390/math12071004 - 27 Mar 2024
Viewed by 752
Abstract
This study explores the advanced mathematical modeling of electromagnetic energy harvesting in vehicle suspension systems, addressing the pressing need for sustainable transportation and improved energy efficiency. We focus on the complex challenge posed by the non-linear behavior of magnetic flux in relation to [...] Read more.
This study explores the advanced mathematical modeling of electromagnetic energy harvesting in vehicle suspension systems, addressing the pressing need for sustainable transportation and improved energy efficiency. We focus on the complex challenge posed by the non-linear behavior of magnetic flux in relation to displacement, a critical aspect often overlooked in conventional approaches. Utilizing Taylor expansion and Fourier analysis, we dissect the intricate relationship between oscillation and electromagnetic damping, crucial for optimizing energy recovery. Our rigorous mathematical methodology enables the precise calculation of the average power per cycle and unit mass, providing a robust metric for evaluating the effectiveness of energy harvesting. Further, the study extends to the practical application in a combined system of passive and electromagnetic suspension, demonstrating the real-world viability of our theoretical findings. This research not only offers a comprehensive solution for enhancing vehicle efficiency through advanced suspension systems but also sets a precedent for the integration of complex mathematical techniques in solving real-world engineering challenges, contributing significantly to the future of energy-efficient automotive technologies. The cases reviewed in this article and listed as references are those commonly found in the literature. Full article
Show Figures

Figure 1

19 pages, 9392 KiB  
Article
Eco-Friendly Cork–Polyurethane Biocomposites for Enhanced Impact Performance: Experimental and Numerical Analysis
by Mateusz Dymek, Mariusz Ptak, Paweł Kaczyński, Fábio A. O. Fernandes, Ricardo J. Alves de Sousa, Gabriel F. Serra and Maria Kurańska
Polymers 2024, 16(7), 887; https://doi.org/10.3390/polym16070887 - 24 Mar 2024
Viewed by 963
Abstract
Cork composites are byproducts from wine stopper production, resulting from the agglomeration of cork granules with a thermoset resin. The resulting compound is a versatile and durable material with numerous industrial applications. Due to its unique properties, such as low-density, high-strength, excellent energy [...] Read more.
Cork composites are byproducts from wine stopper production, resulting from the agglomeration of cork granules with a thermoset resin. The resulting compound is a versatile and durable material with numerous industrial applications. Due to its unique properties, such as low-density, high-strength, excellent energy absorption, and good thermal and acoustic insulators, cork composites find room for application in demanding industries such as automotive, construction, and aerospace. However, agglomerated cork typically has a polyurethane matrix derived from petrochemical sources. This study focuses on developing eco-friendly porous polyurethane biocomposites manufactured with the used cooking oil polyol modified with cork. Since cork and polyurethane foam are typically used for impact shock absorption, the manufactured samples were subjected to impact loading. The assessment of crashworthiness is performed through 100 J impact tests. A finite element numerical model was developed to simulate the compression of these new composites under impact, and the model validation was performed. The highest specific absorbed energy was obtained for petrochemical polyol composites with the 3% addition of natural or modified cork. The research conducted in this study showcased the feasibility of substituting certain petrochemical components used for the synthesis of the polyurethane matrix with ecological waste vegetable oil components. Full article
(This article belongs to the Special Issue Polymers and the Environment II)
Show Figures

Graphical abstract

29 pages, 2631 KiB  
Article
Preliminary Nose Landing Gear Digital Twin for Damage Detection
by Lucio Pinello, Omar Hassan, Marco Giglio and Claudio Sbarufatti
Aerospace 2024, 11(3), 222; https://doi.org/10.3390/aerospace11030222 - 12 Mar 2024
Cited by 1 | Viewed by 1293
Abstract
An increase in aircraft availability and readiness is one of the most desired characteristics of aircraft fleets. Unforeseen failures cause additional expenses and are particularly critical when thinking about combat jets and Unmanned Aerial Vehicles (UAVs). For instance, these systems are used under [...] Read more.
An increase in aircraft availability and readiness is one of the most desired characteristics of aircraft fleets. Unforeseen failures cause additional expenses and are particularly critical when thinking about combat jets and Unmanned Aerial Vehicles (UAVs). For instance, these systems are used under extreme conditions, and there can be situations where standard maintenance procedures are impractical or unfeasible. Thus, it is important to develop a Health and Usage Monitoring System (HUMS) that relies on diagnostic and prognostic algorithms to minimise maintenance downtime, improve safety and availability, and reduce maintenance costs. In particular, within the realm of aircraft structures, landing gear emerges as one of the most intricate systems, comprising several elements, such as actuators, shock absorbers, and structural components. Therefore, this work aims to develop a preliminary digital twin of a nose landing gear and implement diagnostic algorithms within the framework of the Health and Usage Monitoring System (HUMS). In this context, a digital twin can be used to build a database of signals acquired under healthy and faulty conditions on which damage detection algorithms can be implemented and tested. In particular, two algorithms have been implemented: the first is based on the Root-Mean-Square Error (RMSE), while the second relies on the Mahalanobis distance (MD). The algorithms were tested for three nose landing gear subsystems, namely, the steering system, the retraction/extraction system, and the oleo-pneumatic shock absorber. A comparison is made between the two algorithms using the ROC curve and accuracy, assuming equal weight for missed detections and false alarms. The algorithm that uses the Mahalanobis distance demonstrated superior performance, with a lower false alarm rate and higher accuracy compared to the other algorithm. Full article
(This article belongs to the Special Issue Aircraft Structural Health Monitoring and Digital Twin)
Show Figures

Figure 1

21 pages, 4830 KiB  
Article
Research on Inertial Force Attenuation Structure and Semi-Active Control of Regenerative Suspension
by Huixin Song, Mingming Dong and Xin Wang
Appl. Sci. 2024, 14(6), 2314; https://doi.org/10.3390/app14062314 - 9 Mar 2024
Cited by 1 | Viewed by 824
Abstract
To improve the energy recovery ability of the energy-regenerative suspension, a transmission is generally used to increase the motor speed, but this results in a significant increase in the equivalent inertial mass of the suspension. The research on energy-regenerative suspension has been ongoing [...] Read more.
To improve the energy recovery ability of the energy-regenerative suspension, a transmission is generally used to increase the motor speed, but this results in a significant increase in the equivalent inertial mass of the suspension. The research on energy-regenerative suspension has been ongoing for more than 20 years, but there have been few product applications, mainly due to the failure to solve the problem of the deterioration of suspension performance caused by equivalent inertial mass. This paper proposes a new suspension configuration with the suspension shock absorber connected to a high-frequency vibration reduction structure and establishes a vibration transmission model. Through frequency domain analysis, it has been conclusively proven that the new-configuration can significantly reduce both the sprung mass acceleration and relative dynamic load of the energy regenerative suspension. On the basis of frequency domain analysis, a scheme based on PWM control of the dissipation resistance value of the energy regenerative suspension is proposed, and through bench comparison experiments, it has been verified that the new-configuration suspension can eliminate the oscillation of the damping force curve of the shock absorber and significantly improve the suspension performance. Further experiments show that using the skyhook semi-active control algorithm the new-configuration suspension can further reduce the sprung mass acceleration and relative dynamic load. Full article
(This article belongs to the Topic Vehicle Dynamics and Control)
Show Figures

Figure 1

Back to TopTop