Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,284)

Search Parameters:
Keywords = solubility predictions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2644 KiB  
Article
Upregulated Nuclear Expression of Soluble Epoxide Hydrolase Predicts Poor Outcome in Breast Cancer Patients: Importance of the Digital Pathology Approach
by Mayra Montecillo-Aguado, Giovanny Soca-Chafre, Gabriela Antonio-Andres, Mario Morales-Martinez, Belen Tirado-Rodriguez, Angelica G. Rocha-Lopez, Daniel Hernandez-Cueto, Sandra G. Sánchez-Ceja, Berenice Alcala-Mota-Velazco, Anel Gomez-Garcia, Sergio Gutiérrez-Castellanos and Sara Huerta-Yepez
Int. J. Mol. Sci. 2024, 25(15), 8024; https://doi.org/10.3390/ijms25158024 - 23 Jul 2024
Viewed by 183
Abstract
Breast cancer (BC) is the most common cancer in women, with incidence rates increasing globally in recent years. Therefore, it is important to find new molecules with prognostic and therapeutic value to improve therapeutic response and quality of life. The polyunsaturated fatty acids [...] Read more.
Breast cancer (BC) is the most common cancer in women, with incidence rates increasing globally in recent years. Therefore, it is important to find new molecules with prognostic and therapeutic value to improve therapeutic response and quality of life. The polyunsaturated fatty acids (PUFAs) metabolic pathway participates in various physiological processes, as well as in the development of malignancies. Although aberrancies in the PUFAs metabolic pathway have been implicated in carcinogenesis, the functional and clinical relevance of this pathway has not been well explored in BC. To evaluate the clinical significance of soluble epoxide hydrolase (EPHX2) expression in Mexican patients with BC using tissue microarrays (TMAs) and digital pathology (DP). Immunohistochemical analyses were performed on 11 TMAs with 267 BC samples to quantify this enzyme. Using DP, EPHX2 protein expression was evaluated solely in tumor areas. The association of EPHX2 with overall survival (OS) was detected through bioinformatic analysis in public databases and confirmed in our cohort via Cox regression analysis. Clear nuclear expression of EPHX2 was identified. Receiver operating characteristics (ROC) curves revealed the optimal cutoff point at 2.847062 × 10−3 pixels, with sensitivity of 69.2% and specificity of 67%. Stratification based on this cutoff value showed elevated EPHX2 expression in multiple clinicopathological features, including older age and nuclear grade, human epidermal growth factor receptor 2 (HER2) and triple negative breast cancer (TNBC) subtypes, and recurrence. Kaplan–Meier curves demonstrated how higher nuclear expression of EPHX2 predicts shorter OS. Consistently, multivariate analysis confirmed EPHX2 as an independent predictor of OS, with a hazard ratio (HR) of 3.483 and a 95% confidence interval of 1.804–6.724 (p < 0.001). Our study demonstrates for the first time that nuclear overexpression of EPHX2 is a predictor of poor prognosis in BC patients. The DP approach was instrumental in identifying this significant association. Our study provides valuable insights into the potential clinical utility of EPHX2 as a prognostic biomarker and therapeutic target in BC. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Oncology in Mexico, 2nd Edition)
Show Figures

Figure 1

16 pages, 2037 KiB  
Review
Recent Advances in Efficient Lutein-Loaded Zein-Based Solid Nano-Delivery Systems: Establishment, Structural Characterization, and Functional Properties
by He Han, Ying Chang and Yan Jiao
Foods 2024, 13(14), 2304; https://doi.org/10.3390/foods13142304 - 22 Jul 2024
Viewed by 444
Abstract
Plant proteins have gained significant attention over animal proteins due to their low carbon footprint, balanced nutrition, and high sustainability. These attributes make plant protein nanocarriers promising for applications in drug delivery, nutraceuticals, functional foods, and other areas. Zein, a major by-product of [...] Read more.
Plant proteins have gained significant attention over animal proteins due to their low carbon footprint, balanced nutrition, and high sustainability. These attributes make plant protein nanocarriers promising for applications in drug delivery, nutraceuticals, functional foods, and other areas. Zein, a major by-product of corn starch processing, is inexpensive and widely available. Its unique self-assembly characteristics have led to its extensive use in various food and drug systems. Zein’s functional tunability allows for excellent performance in loading and transporting bioactive substances. Lutein offers numerous bioactive functions, such as antioxidant and vision protection, but suffers from poor chemical stability and low bioavailability. Nano-embedding technology can construct various zein-loaded lutein nanodelivery systems to address these issues. This review provides an overview of recent advances in the construction of zein-loaded lutein nanosystems. It discusses the fundamental properties of these systems; systematically introduces preparation techniques, structural characterization, and functional properties; and analyzes and predicts the target-controlled release and bioaccessibility of zein-loaded lutein nanosystems. The interactions and synergistic effects between Zein and lutein in the nanocomplexes are examined to elucidate the formation mechanism and conformational relationship of zein–lutein nanoparticles. The physical and chemical properties of Zein are closely related to the molecular structure. Zein and its modified products can encapsulate and protect lutein through various methods, creating more stable and efficient zein-loaded lutein nanosystems. Additionally, embedding lutein in Zein and its derivatives enhances lutein’s digestive stability, solubility, antioxidant properties, and overall bioavailability. Full article
(This article belongs to the Special Issue Encapsulation Technologies and Delivery Systems for Food Ingredients)
Show Figures

Figure 1

15 pages, 5073 KiB  
Article
In Situ Prediction of Microstructure and Mechanical Properties in Laser-Remelted Al-Si Alloys: Towards Enhanced Additive Manufacturing
by Metin Kayitmazbatir and Mihaela Banu
Materials 2024, 17(14), 3622; https://doi.org/10.3390/ma17143622 - 22 Jul 2024
Viewed by 249
Abstract
Laser surface remelting of aluminum alloys has emerged as a promising technique to enhance mechanical properties through refined microstructures. This process involves rapid cooling rates ranging from 103 to 108 °C/s, which increase solid solubility within aluminum alloys, shifting their eutectic [...] Read more.
Laser surface remelting of aluminum alloys has emerged as a promising technique to enhance mechanical properties through refined microstructures. This process involves rapid cooling rates ranging from 103 to 108 °C/s, which increase solid solubility within aluminum alloys, shifting their eutectic composition to a larger value of silicon content. Consequently, the resulting microstructure combines a strengthened aluminum matrix with silicon fibers. This study focuses on the laser scanning of Al-Si aluminum alloy to reduce the size of aluminum matrix spacings and transform fibrous silicon particles from micrometer to nanometer dimensions. Analysis revealed that the eutectic structure contained 17.55% silicon by weight, surpassing the equilibrium eutectic composition of 12.6% silicon. Microstructure dimensions within the molten zones, termed ‘melt pools’, were extensively examined using Scanning Electron Microscopy (SEM) at intervals of approximately 20 μm from the surface. A notable increase in hardness, exceeding 50% compared to the base plate, was observed in the melt pool regions. Thus, it is exemplified that laser surface remelting introduces a novel strengthening mechanism in the alloy. Moreover, this study develops an in situ method for predicting melt pool properties and dimensions. A predictive model is proposed, correlating energy density and spectral signals emitted during laser remelting with mechanical properties and melt pool dimensions. This method significantly reduces characterization time from days to seconds, offering a streamlined approach for future studies in additive manufacturing. Full article
(This article belongs to the Special Issue Advanced Welding in Alloys and Composites)
Show Figures

Figure 1

13 pages, 2050 KiB  
Article
Evaluating Soluble Solids in White Strawberries: A Comparative Analysis of Vis-NIR and NIR Spectroscopy
by Hayato Seki, Haruko Murakami, Te Ma, Satoru Tsuchikawa and Tetsuya Inagaki
Foods 2024, 13(14), 2274; https://doi.org/10.3390/foods13142274 - 19 Jul 2024
Viewed by 357
Abstract
In recent years, due to breeding improvements, strawberries with low anthocyanin content and a white rind are now available, and they are highly valued in the market. Strawberries with white skin color do not turn red when ripe, making it difficult to judge [...] Read more.
In recent years, due to breeding improvements, strawberries with low anthocyanin content and a white rind are now available, and they are highly valued in the market. Strawberries with white skin color do not turn red when ripe, making it difficult to judge ripeness. The soluble solids content (SSC) is an indicator of fruit quality and is closely related to ripeness. In this study, visible–near-infrared (Vis-NIR) spectroscopy and near-infrared (NIR) spectroscopy are used for non-destructive evaluation of the SSC. Vis-NIR (500–978 nm) and NIR (908–1676 nm) data collected from 180 samples of “Tochigi iW1 go” white strawberries and 150 samples of “Tochigi i27 go” red strawberries are investigated. The white strawberry SSC model developed by partial least squares regression (PLSR) in Vis-NIR had a determination coefficient R2p of 0.89 and a root mean square error prediction (RMSEP) of 0.40%; the model developed in NIR showed satisfactory estimation accuracy with an R2p of 0.85 and an RMSEP of 0.43%. These estimation accuracies were comparable to the results of the red strawberry model. Absorption derived from anthocyanin and chlorophyll pigments in white strawberries was observed in the Vis-NIR region. In addition, a dataset consisting of red and white strawberries can be used to predict the pigment-independent SSC. These results contribute to the development of methods for a rapid fruit sorting system and the development of an on-site ripeness determination system. Full article
(This article belongs to the Special Issue Advances in Analytical Techniques for Food Quality and Safety)
Show Figures

Figure 1

15 pages, 4965 KiB  
Article
The Increase in the Plasticity of Microcrystalline Cellulose Spheres’ When Loaded with a Plasticizer
by Artūrs Paulausks, Tetiana Kolisnyk and Valentyn Mohylyuk
Pharmaceutics 2024, 16(7), 945; https://doi.org/10.3390/pharmaceutics16070945 - 16 Jul 2024
Viewed by 410
Abstract
Compaction pressure can induce an undesirable solid-state polymorphic transition in drugs, fragmentation, loss of coated pellet integrity, and the decreased viability and vitality of microorganisms. Thus, the excipients with increased plasticity can be considered as an option to decrease the undesirable effects of [...] Read more.
Compaction pressure can induce an undesirable solid-state polymorphic transition in drugs, fragmentation, loss of coated pellet integrity, and the decreased viability and vitality of microorganisms. Thus, the excipients with increased plasticity can be considered as an option to decrease the undesirable effects of compaction pressure. This study aims to increase the plasticity (to reduce the mean yield pressure; Py) of dried microcrystalline cellulose (MCC) by loading it with a specially selected plasticizer. Diethyl citrate (DEC), water, and glycerol were the considered plasticizers. Computation of solubility parameters was used to predict the miscibility of MCC with plasticizers (possible plasticization effect). Plasticizer-loaded MCC spheres with 5.0 wt.% of water, 5.2 wt.% of DEC, and 4.2 wt.% glycerol were obtained via the solvent method, followed by solvent evaporation. Plasticizer-loaded formulations were characterised by TGA, DSC, pXRD, FTIR, pressure-displacement profiles, and in-die Heckel plots. Py was derived from the in-die Heckel analysis and was used as a plasticity parameter. In comparison with non-plasticized MCC (Py = 136.5 MPa), the plasticity of plasticizer-loaded formulations increased (and Py decreased) from DEC (124.7 MPa) to water (106.6 MPa) and glycerol (99.9 MPa), and that was in full accordance with the predicted miscibility likeliness order based on solubility parameters. Therefore, water and glycerol were able to decrease the Py of non-plasticized MCC spheres by 16.3 and 30.0%, respectively. This feasibility study showed the possibility of modifying the plasticity of MCC by loading it with a specially selected plasticizer. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

17 pages, 6722 KiB  
Article
Screening and Verification of Aquaporin Gene AsPIP1-3 in Garlic (Allium sativum L.) under Salt and Drought Stress
by Hanyu Wei, Jiaojiao Ruan, Rong Zhou, Yunhe Bai, Min Liu, Fangling Jiang and Zhen Wu
Horticulturae 2024, 10(7), 738; https://doi.org/10.3390/horticulturae10070738 - 12 Jul 2024
Viewed by 325
Abstract
In order to screen candidate aquaporin genes involved in resisting osmotic stress, we analyzed the physiological responses and the expression levels of aquaporin genes in garlic under drought and salt stress with ‘Er Shuizao’ as plant material. Different physiological indicators were detected under [...] Read more.
In order to screen candidate aquaporin genes involved in resisting osmotic stress, we analyzed the physiological responses and the expression levels of aquaporin genes in garlic under drought and salt stress with ‘Er Shuizao’ as plant material. Different physiological indicators were detected under drought and salt stress treatments. RT-qPCR was used to detect the expression levels of the candidate aquaporin genes in specific tissues. Finally, we screened AsPIP1-3 as a candidate gene and analyzed its function. The results showed that the relative water content and chlorophyll content of leaves decreased, the O2 production rate increased, and H2O2 accumulated in garlic under drought and salt stress. The activities of SOD, POD, and CAT enzymes first increased and then decreased in garlic. The content of soluble sugar and proline increased to maintain cell osmotic balance, and the content of MDA and relative conductivity continued to increase. Most aquaporin gene expression first increased and then decreased in garlic under drought and salt stress. AsPIP1-3 gene expression is up-regulated under drought and salt stress in garlic. The relative expression was the highest on the 6th day of stress, being related to antioxidant enzyme activity and osmotic regulation. The consistent changes in gene expressions and physiological responses indicated that AsPIP1-3 played a role in resisting garlic osmotic stress. AsPIP1-3 was located on the cell membrane, being consistent with the predicted results of subcellular localization. The germination rate and root length of transgenic Arabidopsis under drought stress were significantly different from the wild type. Drought stress reduced the ROS accumulation of transgenic Arabidopsis, and the antioxidant enzyme activity was significantly higher than the wild type. The relative conductivity and MDA content significantly decreased, and the proline content increased under drought stress. The expression level of the genes related to drought stress response (AtRD22, AtP5CS, AtABF3, and AtLEA) significantly increased. The overexpression of AsPIP1-3 genes improved the drought tolerance of transgenic Arabidopsis plants, showing that AsPIP1-3 proteins enhanced drought tolerance. Our study laid a foundation for exploring the regulatory mechanism of garlic to abiotic stress. Full article
Show Figures

Figure 1

15 pages, 3950 KiB  
Article
Optimization of Hydrochemical Leaching Process of Kaolinite Fraction of Bauxite with Response Surface Methodology
by Yerkezhan Abikak, Arina Bakhshyan, Symbat Dyussenova, Sergey Gladyshev and Asiya Kassymzhanova
Processes 2024, 12(7), 1440; https://doi.org/10.3390/pr12071440 - 10 Jul 2024
Viewed by 370
Abstract
A technology for the hydrochemical processing of the kaolinite fraction of bauxite has been developed, and it involves preliminary chemical activation in a sodium bicarbonate solution and alkaline leaching in a recycled high-modulus solution with the addition of an active form of calcium [...] Read more.
A technology for the hydrochemical processing of the kaolinite fraction of bauxite has been developed, and it involves preliminary chemical activation in a sodium bicarbonate solution and alkaline leaching in a recycled high-modulus solution with the addition of an active form of calcium oxide. Chemical activation allows for the transformation of the difficult-to-explore kaolinite phase to form easily soluble phases of dawsonite, sodium hydroaluminosilicate and bemite. An active, finely dispersed form of calcium oxide was obtained as a result of CaO quenching in Na2SO4 solution at elevated temperature and pressure. Using a central composite design (CCD) via response surface methodology (RSM), the technological leaching mode was achieved. The influence on the leaching process was studied by adjusting the CaO/SiO2 ratio, temperature, alkaline solution concentration and duration. It was found that the determining factors are the concentration of the leaching solution and the temperature. At a stable CaO/SiO2 ratio, a combination of these two factors determines the duration of the process to achieve the predicted degree of recovery. The results of experiments carried out using the developed model of the leaching process confirmed the validity of the calculated indicators, with an error of 2.01%. In an optimal technological mode at a Na2O leaching solution concentration of 260 g/L, a temperature of 260 °C, a CaO/SiO2 ratio of 1.5 and a leaching time of 5 h, the extraction of Al2O3 into the solution was 89.7%, which is close to the value of 87.9% predicted by the model. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 3055 KiB  
Article
Effects of Postprandial Factors and Second Meal Intake Time on Bioequivalence Investigation of Tadalafil-Loaded Orodispersible Films in Human Volunteers
by Su-Jun Park, Myung-Chul Gil, Bong-Sang Lee, Minji Jung and Beom-Jin Lee
Pharmaceutics 2024, 16(7), 915; https://doi.org/10.3390/pharmaceutics16070915 (registering DOI) - 9 Jul 2024
Viewed by 340
Abstract
Tadalafil (TD) has poor water solubility but is well absorbed without affecting food intake when administered orally. Owing to patient adherence and therapeutic characteristics, a TD-loaded orodispersible film (TDF) is preferable. However, the mechanistic role of dietary status on the clinical pharmacokinetic analysis [...] Read more.
Tadalafil (TD) has poor water solubility but is well absorbed without affecting food intake when administered orally. Owing to patient adherence and therapeutic characteristics, a TD-loaded orodispersible film (TDF) is preferable. However, the mechanistic role of dietary status on the clinical pharmacokinetic analysis of TDF in human volunteers should be investigated because the gastrointestinal environment varies periodically according to meal intervals, although commercial 20 mg TD-loaded tablets (TD-TAB, Cialis® tablet) may be taken with or without food. TDF was prepared by dispersing TD in an aqueous solution and polyethylene glycol 400 to ensure good dispersibility of the TD particles. In the fasting state, each T/R of Cmax and AUC between TD-TAB and TDF showed bioequivalence with 0.936–1.105 and 1.012–1.153, respectively, and dissolution rates in 1000 mL water containing 0.5% SLS were equivalent. In contrast, TDF was not bioequivalent to TD-TAB under the fed conditions by the Cmax T/R of 0.610–0.798. The increased dissolution rate of TDF via the micronization of drug particles and the reduced viscosity of the second meal content did not significantly affect the bioequivalence. Interestingly, an increase in second meal intake time from 4 h to 6 h resulted in the bioequivalence by the Cmax T/R of 0.851–0.998 of TD-TAB and TDF. The predictive diffusion direction model for physical digestion of TD-TAB and TDF in the stomach after the first and second meal intake was successfully simulated using computational fluid dynamics modeling, accounting for the delayed drug diffusion of TDF caused by prolonged digestion of stomach contents under postprandial conditions. Full article
Show Figures

Graphical abstract

13 pages, 1033 KiB  
Article
Progranulin, sICAM-1, and sVCAM-1 May Predict an Increased Risk for Ventricular Arrhythmias in Patients with Systemic Sclerosis
by Veronika Sebestyén, Balázs Ratku, Dóra Ujvárosy, Hajnalka Lőrincz, Dóra Tari, Lilla Végh, Gyöngyike Majai, Sándor Somodi, Dénes Páll, Gabriella Szűcs, Mariann Harangi and Zoltán Szabó
Int. J. Mol. Sci. 2024, 25(13), 7380; https://doi.org/10.3390/ijms25137380 - 5 Jul 2024
Viewed by 395
Abstract
In systemic sclerosis (SSc), fibrosis of the myocardium along with ongoing autoimmune inflammation can alter the electric function of the cardiac myocytes, which may increase the risk for ventricular arrhythmias and sudden cardiac death. We analyzed the electrocardiographic (ECG) variables describing ventricular repolarization [...] Read more.
In systemic sclerosis (SSc), fibrosis of the myocardium along with ongoing autoimmune inflammation can alter the electric function of the cardiac myocytes, which may increase the risk for ventricular arrhythmias and sudden cardiac death. We analyzed the electrocardiographic (ECG) variables describing ventricular repolarization such as QT interval, QT dispersion (QTd), T wave peak-to-end interval (Tpe), and arrhythmogeneity index (AIX) of 26 patients with SSc and 36 healthy controls. Furthermore, echocardiographic and laboratory parameters were examined, with a focus on inflammatory proteins like C-reactive ptotein (CRP), soluble intracellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), and progranulin (PGRN). The CRP, sICAM-1, and sVCAM-1 levels were positively correlated with the length of the QT interval. Although the serum PGRN levels were not increased in the SSc group compared to the controls, in SSc patients, the PGRN levels were positively correlated with the QT interval and the AIX. According to our results, we conclude that there may be a potential association between autoimmune inflammation and the risk for ventricular arrhythmias in patients with SSc. We emphasize that the measurement of laboratory parameters of inflammatory activity including CRP, PGRN, sVCAM-1, and sICAM-1 could be helpful in the prediction of sudden cardiac death in patients with SSc. Full article
(This article belongs to the Special Issue Metabolic Mechanisms of Cardiac Injury)
Show Figures

Figure 1

12 pages, 3427 KiB  
Article
Prediction of Strawberry Quality during Maturity Based on Hyperspectral Technology
by Li Fan, Jiacheng Yu, Peng Zhang and Min Xie
Agronomy 2024, 14(7), 1450; https://doi.org/10.3390/agronomy14071450 - 4 Jul 2024
Viewed by 347
Abstract
In a study aimed at developing a rapid and nondestructive method for testing the quality of strawberries, spectral data from four strawberry varieties at different ripening stages were collected using a geophysical spectrometer, primarily focusing on the 350–1800 nm band. The spectra were [...] Read more.
In a study aimed at developing a rapid and nondestructive method for testing the quality of strawberries, spectral data from four strawberry varieties at different ripening stages were collected using a geophysical spectrometer, primarily focusing on the 350–1800 nm band. The spectra were preprocessed using Savitzky–Golay (SG) filtering, and characteristic bands were extracted using Pearson correlation coefficient (PCC) analysis. Models for predicting strawberry quality were built using random forest (RF), support vector machine (SVM), partial least squares (PLS), and Gaussian regression (GPR). The results indicated that the SVM model exhibited relatively high accuracy in predicting anthocyanin, hardness, and soluble solids content in strawberries. For the test set, the SVM model achieved R2 and RMSE values of 0.81, 0.87, and 0.89, and 0.04 mg/g, 0.33 kg/cm2, and 0.72%, respectively. Additionally, the PLS model demonstrated relatively high accuracy in predicting the titratable acid content of strawberries, achieving R2 and RMSE values of 0.85 and 0.03%, respectively, for the test set. These findings provided a solid foundation for strawberry quality modeling and a veritable guide for non-destructive assessment of strawberry quality. Full article
(This article belongs to the Special Issue The Use of NIR Spectroscopy in Smart Agriculture)
Show Figures

Figure 1

18 pages, 6585 KiB  
Article
Genome-Wide Analysis of Polygalacturonase Gene Family Reveals Its Role in Strawberry Softening
by Mantong Zhao, Ruixin Hu, Yuanxiu Lin, Yeqiao Yang, Qing Chen, Mengyao Li, Yong Zhang, Yunting Zhang, Yan Wang, Wen He, Xiaorong Wang, Haoru Tang and Ya Luo
Plants 2024, 13(13), 1838; https://doi.org/10.3390/plants13131838 - 4 Jul 2024
Viewed by 429
Abstract
Fruit softening is a prominent attribute governing both longevity on shelves and commercial worth. Polygalacturonase (PG) plays a major role in strawberry fruit softening. However, the PG gene family in strawberry has not been comprehensively analyzed. In this study, 75 FaPG genes were [...] Read more.
Fruit softening is a prominent attribute governing both longevity on shelves and commercial worth. Polygalacturonase (PG) plays a major role in strawberry fruit softening. However, the PG gene family in strawberry has not been comprehensively analyzed. In this study, 75 FaPG genes were identified in the octoploid strawberry genome, which were classified into three groups according to phylogenetic analysis. Subcellular localization prediction indicated that FaPGs are mostly localized to the plasma membrane, cytoplasm, and chloroplasts. Moreover, the expression of FaPGs during strawberry development and ripening of ‘Benihoppe’ and its softer mutant was estimated. The results showed that among all 75 FaPGs, most genes exhibited low expression across developmental stages, while two group c members (FxaC_21g15770 and FxaC_20g05360) and one group b member, FxaC_19g05040, displayed relatively higher and gradual increases in their expression trends during strawberry ripening and softening. FxaC_21g15770 was selected for subsequent silencing to validate its role in strawberry softening due to the fact that it exhibited the highest and most changed expression level across different developmental stages in ‘Benihoppe’ and its mutant. Silencing FxaC_21g15770 could significantly improve strawberry fruit firmness without affecting fruit color, soluble solids, cellulose, and hemicellulose. Conversely, silencing FxaC_21g15770 could significantly suppress the expression of other genes related to pectin degradation such as FaPG-like, FaPL, FaPME, FaCX, FaCel, FaGlu, FaXET, and FaEG. These findings provide basic information on the FaPG gene family for further functional research and indicate that FxaC_21g15770 plays a vital role in strawberry fruit softening. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

10 pages, 1131 KiB  
Article
Prognostic Value of Serum Galectin-3 for Survival in Patients with Cardiac Light-Chain Amyloidosis
by Xinglin Yang, Jin Huang, Jinghong Zhang, Jian Li and Zhuang Tian
J. Cardiovasc. Dev. Dis. 2024, 11(7), 202; https://doi.org/10.3390/jcdd11070202 - 29 Jun 2024
Viewed by 461
Abstract
Background: Amyloid light-chain (AL) amyloidosis is a multisystem disorder, with cardiac amyloid infiltration being a prevalent manifestation. This study aimed to explore the prognostic value of galectin-3 (Gal-3), a soluble marker associated with fibrosis, inflammation, heart failure, and kidney injury, in patients with [...] Read more.
Background: Amyloid light-chain (AL) amyloidosis is a multisystem disorder, with cardiac amyloid infiltration being a prevalent manifestation. This study aimed to explore the prognostic value of galectin-3 (Gal-3), a soluble marker associated with fibrosis, inflammation, heart failure, and kidney injury, in patients with cardiac AL amyloidosis. Methods: A total of 60 patients who were diagnosed with cardiac AL amyloidosis from January 2015 to May 2018 were enrolled. The prognostic value of Gal-3 was assessed. Receiver operating characteristic (ROC) curves were used to evaluate the predictive accuracy of Gal-3. A Gal-3 cut-off value was identified to predict survival rates. Results: The ROC curves demonstrated a moderate predictive accuracy of Gal-3 for 0.5- and 5-year survival, with area under the curve (AUC) values of 0.722 and 0.788, respectively. A Gal-3 cut-off value of 15.154 ng/mL was found to predict survival. Kaplan–Meier survival analysis revealed a significant difference in mean overall survival between patients with Gal-3 levels below and above the established cut-off (69.2 months versus 42.1 months, respectively; p = 0.036). Multivariate analysis confirmed that Gal-3 > 15.154 ng/mL remained an independent predictor of survival (HR 2.451, 95% CI 1.017–5.910, p = 0.046). Conclusions: This study suggests that Gal-3 holds independent prognostic value for survival in patients with cardiac AL amyloidosis. Gal-3 could potentially enhance the prognostic capabilities of the current soluble markers, thereby improving the management of cardiac AL amyloidosis. However, further validation in larger prospective studies is warranted. Full article
Show Figures

Figure 1

18 pages, 4357 KiB  
Article
Harnessing Immunoinformatics for Precision Vaccines: Designing Epitope-Based Subunit Vaccines against Hepatitis E Virus
by Elijah Kolawole Oladipo, Emmanuel Oluwatobi Dairo, Comfort Olukemi Bamigboye, Ayodeji Folorunsho Ajayi, Olugbenga Samson Onile, Olumuyiwa Elijah Ariyo, Esther Moradeyo Jimah, Olubukola Monisola Oyawoye, Julius Kola Oloke, Bamidele Abiodun Iwalokun, Olumide Faith Ajani and Helen Onyeaka
BioMedInformatics 2024, 4(3), 1620-1637; https://doi.org/10.3390/biomedinformatics4030088 - 26 Jun 2024
Viewed by 848
Abstract
Background/Objectives: Hepatitis E virus (HEV) is an RNA virus recognized to be spread mainly by fecal-contaminated water. Its infection is known to be a serious threat to public health globally, mostly in developing countries, in which Africa is one of the regions sternly [...] Read more.
Background/Objectives: Hepatitis E virus (HEV) is an RNA virus recognized to be spread mainly by fecal-contaminated water. Its infection is known to be a serious threat to public health globally, mostly in developing countries, in which Africa is one of the regions sternly affected. An African-based vaccine is necessary to actively prevent HEV infection. Methods: This study developed an in silico epitope-based subunit vaccine, incorporating CTL, HTL, and BL epitopes with suitable linkers and adjuvants. Results: The in silico-designed vaccine construct proved immunogenic, non-allergenic, and non-toxic and displayed appropriate physicochemical properties with high solubility. The 3D structure was modeled and subjected to protein docking with Toll-like receptors 2, 3, 4, 6, 8, and 9, which showed a stable binding efficacy, and the dynamics simulation indicated steady interaction. Furthermore, the immune simulation predicted that the designed vaccine would instigate immune responses when administered to humans. Lastly, using a codon adaptation for the E. coli K12 bacterium produced optimum GC content and a high CAI value, which was followed by in silico integration into a pET28 b (+) cloning vector. Conclusions: Generally, these results propose that the design of an epitope-based subunit vaccine can function as an outstanding preventive vaccine candidate against HEV, although validation techniques via in vitro and in vivo approaches are required to justify this statement. Full article
Show Figures

Figure 1

22 pages, 4887 KiB  
Review
Recent Progress in Creep-Resistant Aluminum Alloys for Diesel Engine Applications: A Review
by Raul Irving Arriaga-Benitez and Mihriban Pekguleryuz
Materials 2024, 17(13), 3076; https://doi.org/10.3390/ma17133076 - 22 Jun 2024
Viewed by 402
Abstract
Diesel engines in heavy-duty vehicles are predicted to maintain a stable presence in the future due to the difficulty of electrifying heavy trucks, mine equipment, and railway cars. This trend encourages the effort to develop new aluminum alloy systems with improved performance at [...] Read more.
Diesel engines in heavy-duty vehicles are predicted to maintain a stable presence in the future due to the difficulty of electrifying heavy trucks, mine equipment, and railway cars. This trend encourages the effort to develop new aluminum alloy systems with improved performance at diesel engine conditions of elevated temperature and stress combinations to reduce vehicle weight and, consequently, CO2 emissions. Aluminum alloys need to provide adequate creep resistance at ~300 °C and room-temperature tensile properties better than the current commercial aluminum alloys used for powertrain applications. The studies for improving creep resistance for aluminum casting alloys indicate that their high-temperature stability depends on the formation of high-density uniform dispersoids with low solid solubility and low diffusivity in aluminum. This review summarizes three generations of diesel engine aluminum alloys and focuses on recent work on the third-generation dispersoid-strengthened alloys. Additionally, new trends in developing creep resistance through the development of alloy systems other than Al-Si-based alloys, the optimization of manufacturing processes, and the use of thermal barrier coatings and composites are discussed. New progress on concepts regarding the thermal stability of rapidly solidified and nano-structured alloys and on creep-resistant alloy design via machine learning-based algorithms is also presented. Full article
Show Figures

Figure 1

21 pages, 10437 KiB  
Article
The Seed Germination Test as a Valuable Tool for the Short-Term Phytotoxicity Screening of Water-Soluble Polyamidoamines
by Elisabetta Ranucci, Sofia Treccani, Paolo Ferruti and Jenny Alongi
Polymers 2024, 16(12), 1744; https://doi.org/10.3390/polym16121744 - 19 Jun 2024
Viewed by 505
Abstract
Six differently charged amphoteric polyamidoamines, synthesized by the polyaddition of N,N′-methylenebisacrylamide to alanine, leucine, serine, arginine (M-ARG), glutamic acid (M-GLU) and a glycine/cystine mixture, were screened for their short-term phytotoxicity using a seed germination test. Lepidium sativum L. seeds were [...] Read more.
Six differently charged amphoteric polyamidoamines, synthesized by the polyaddition of N,N′-methylenebisacrylamide to alanine, leucine, serine, arginine (M-ARG), glutamic acid (M-GLU) and a glycine/cystine mixture, were screened for their short-term phytotoxicity using a seed germination test. Lepidium sativum L. seeds were incubated in polyamidoamine water solutions with concentrations ranging from 0.156 to 2.5 mg mL−1 at 25 ± 1 °C for 120 h. The seed germination percentage (SG%), an indicator of acute toxicity, and both root and shoot elongation, related to plant maturation, were the considered endpoints. The germination index (GI) was calculated as the product of relative seed germination times relative radical growth. The SG% values were in all cases comparable to those obtained in water, indicating no detectable acute phytotoxicity of the polyamidoamines. In the short term, the predominantly positively charged M-ARG proved to be phytotoxic at all concentrations (GI < 0.8), whereas the predominantly negatively charged M-GLU proved to be biostimulating at intermediate concentrations (GI > 1) and slightly inhibitory at 2.5 mg mL−1 (0.8 < GI < 1). Overall, polyamidoamine phytotoxicity could be correlated to charge distribution, demonstrating the potential of the test for predicting and interpreting the eco-toxicological behavior of water-soluble polyelectrolytes. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop