Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,415)

Search Parameters:
Keywords = starch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2168 KiB  
Article
Effects of Nitrogen Accumulation, Transportation, and Grain Nutritional Quality and Advances in Fungal Endophyte Research in Quinoa (Chenopodium quinoa Willd.) Plants
by Linghong Li, Zhijun Jiang, Xinhui Yang, Yulai Zhang, Jianxun Huang, Jing Dai, Hafeez Noor, Xiangyun Wu, Aixia Ren, Zhiqiang Gao and Min Sun
J. Fungi 2024, 10(7), 504; https://doi.org/10.3390/jof10070504 (registering DOI) - 21 Jul 2024
Abstract
This study aims to understand the influence of nitrogen accumulation, fungal endophyte, yield, nitrogen use efficiency, and grain nutritional quality parameters on the yield of quinoa in some areas of China. The endophytic microbial community in plants plays a crucial role in plant [...] Read more.
This study aims to understand the influence of nitrogen accumulation, fungal endophyte, yield, nitrogen use efficiency, and grain nutritional quality parameters on the yield of quinoa in some areas of China. The endophytic microbial community in plants plays a crucial role in plant growth, development, and health, especially in quinoa plants under different nitrogen fertilizer levels. The results from the present study indicated that appropriate nitrogen application significantly enhanced the nitrogen accumulation and yield of quinoa grains during maturity, increasing by 34.54–42.18% and 14.59–30.71%, respectively. Concurrently, protein content, amylose, total starch, ash, and fat content also increased, with respective growth rates of 1.15–18.18%, 30.74–42.53%, 6.40–12.40%, 1.94–21.94%, and 5.32–22.22%. Our constructed interaction network of bacterial and fungal communities revealed that bacteria outnumbered fungi significantly, and most of them exhibited synergistic interactions. The moderate increase in N150 was beneficial for increasing quinoa yield, achieving nitrogen use efficiency (NUE) of over 20%. The N210 was increased, and both the yield and NUE significantly decreased. This study provides novel insights into the impact of nitrogen fertilizer on quinoa growth and microbial communities, which are crucial for achieving agricultural sustainable development. Full article
(This article belongs to the Special Issue Advances in Fungal Endophyte Research)
Show Figures

Figure 1

12 pages, 2636 KiB  
Article
Deep-Eutectic-Solvent-in-Water Pickering Emulsions Stabilized by Starch Nanoparticles
by Rongzhen Xie, Zhijian Tan, Wei Fan, Jingping Qin, Shiyin Guo, Hang Xiao and Zhonghai Tang
Foods 2024, 13(14), 2293; https://doi.org/10.3390/foods13142293 (registering DOI) - 21 Jul 2024
Abstract
Deep eutectic solvents (DESs) have received extensive attention in green chemistry because of their ease of preparation, cost-effectiveness, and low toxicity. Pickering emulsions offer advantages such as long-term stability, low toxicity, and environmental friendliness. The oil phase in some Pickering emulsions is composed [...] Read more.
Deep eutectic solvents (DESs) have received extensive attention in green chemistry because of their ease of preparation, cost-effectiveness, and low toxicity. Pickering emulsions offer advantages such as long-term stability, low toxicity, and environmental friendliness. The oil phase in some Pickering emulsions is composed of solvents, and DESs can serve as a more effective alternative to these solvents. The combination of DESs and Pickering emulsions can improve the applications of green chemistry by reducing the use of harmful chemicals and enhancing sustainability. In this study, a Pickering emulsion consisting of a DES (menthol:octanoic acid = 1:1) in water was prepared and stabilized using starch nanoparticles (SNPs). The emulsion was thoroughly characterized using various techniques, including optical microscopy, transmission microscopy, laser particle size analysis, and rheological measurements. The results demonstrated that the DES-in-water Pickering emulsion stabilized by the SNPs had excellent stability and retained its structural integrity for more than 200 days at room temperature (20 °C). This prolonged stability has significant implications for many applications, particularly in the field of storage and transportation. This Pickering emulsion based on DESs and SNPs is sustainable and stable, and it has great potential to improve green chemistry practices in various fields. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

13 pages, 5566 KiB  
Article
Protective Encapsulation of a Bioactive Compound in Starch–Polyethylene Glycol-Modified Microparticles: Degradation Analysis with Enzymes
by Karen Sofia Valenzuela Villela, Karen Valeria Alvarado Araujo, Perla Elvia Garcia Casillas and Christian Chapa González
Polymers 2024, 16(14), 2075; https://doi.org/10.3390/polym16142075 (registering DOI) - 20 Jul 2024
Viewed by 111
Abstract
Starch is a promising polymer for creating novel microparticulate systems with superior biocompatibility and controlled drug delivery capabilities. In this study, we synthesized polyethylene glycol (PEG)-modified starch microparticles and encapsulated folic acid using a solvent-mediated acid-base precipitation method with magnetic stirring, which is [...] Read more.
Starch is a promising polymer for creating novel microparticulate systems with superior biocompatibility and controlled drug delivery capabilities. In this study, we synthesized polyethylene glycol (PEG)-modified starch microparticles and encapsulated folic acid using a solvent-mediated acid-base precipitation method with magnetic stirring, which is a simple and effective method. To evaluate particle degradation, we simulated physiological conditions by employing an enzymatic degradation approach. Our results with FTIR and SEM confirmed the successful synthesis of starch–PEG microparticles encapsulating folic acid. The average size of starch microparticles encapsulating folic acid was 4.97 μm and increased to 6.01 μm upon modification with PEG. The microparticles were first exposed to amylase at pH 6.7 and pepsin at pH 1.5 at different incubation times at physiological temperature with shaking. Post-degradation analysis revealed changes in particle size and morphology, indicating effective enzymatic degradation. FTIR spectroscopy was used to assess the chemical composition before and after degradation. The initial FTIR spectra displayed characteristic peaks of starch, PEG, and folic acid, which showed decreased intensities after enzymatic degradation, suggesting alterations in chemical composition. These findings demonstrate the ongoing development of starch–PEG microparticles for controlled drug delivery and other biomedical applications and provide the basis for further exploration of PEG–starch as a versatile biomaterial for encapsulating bioactive compounds. Full article
Show Figures

Figure 1

14 pages, 1188 KiB  
Article
Feed Components and Timing to Improve the Feed Conversion Ratio for Sustainable Aquaculture Using Starch
by Hideaki Shima, Taiga Asakura, Kenji Sakata, Masahiko Koiso and Jun Kikuchi
Int. J. Mol. Sci. 2024, 25(14), 7921; https://doi.org/10.3390/ijms25147921 - 19 Jul 2024
Viewed by 202
Abstract
Aquaculture contributes to the sustainable development of food security, marine resource conservation, and economy. Shifting aquaculture feed from fish meal and oil to terrestrial plant derivatives may result in cost savings. However, many carnivorous fish cannot be sustained on plant-derived materials, necessitating the [...] Read more.
Aquaculture contributes to the sustainable development of food security, marine resource conservation, and economy. Shifting aquaculture feed from fish meal and oil to terrestrial plant derivatives may result in cost savings. However, many carnivorous fish cannot be sustained on plant-derived materials, necessitating the need for the identification of important factors for farmed fish growth and the identification of whether components derived from terrestrial plants can be used in feed. Herein, we focused on the carnivorous fish leopard coral grouper (P. leopardus) to identify the essential growth factors and clarify their intake timing from feeds. Furthermore, we evaluated the functionality of starch, which are easily produced by terrestrial plants. Results reveal that carbohydrates, which are not considered essential for carnivorous fish, can be introduced as a major part of an artificial diet. The development of artificial feed using starch offers the possibility of increasing the growth of carnivorous fish in aquaculture. Full article
(This article belongs to the Section Molecular Biophysics)
20 pages, 1552 KiB  
Article
Transcriptomic and Metabolomic Analyses of Soybean Protein Isolate on Monascus Pigments and Monacolin K Production
by Xueling Qin, Haolan Han, Jiayi Zhang, Bin Xie, Yufan Zhang, Jun Liu, Weiwei Dong, Yuanliang Hu, Xiang Yu and Yanli Feng
J. Fungi 2024, 10(7), 500; https://doi.org/10.3390/jof10070500 - 19 Jul 2024
Viewed by 292
Abstract
Monascus pigments (MPs) and monacolin K (MK) are important secondary metabolites produced by Monascus spp. This study aimed to investigate the effect of soybean protein isolate (SPI) on the biosynthesis of MPs and MK based on the analysis of physiological indicators, transcriptomes, and [...] Read more.
Monascus pigments (MPs) and monacolin K (MK) are important secondary metabolites produced by Monascus spp. This study aimed to investigate the effect of soybean protein isolate (SPI) on the biosynthesis of MPs and MK based on the analysis of physiological indicators, transcriptomes, and metabolomes. The results indicated that the growth, yellow MPs, and MK production of Monascus pilosus MS-1 were significantly enhanced by SPI, which were 8.20, 8.01, and 1.91 times higher than that of the control, respectively. The utilization of a nitrogen source, protease activity, the production and utilization of soluble protein, polypeptides, and free amino acids were also promoted by SPI. The transcriptomic analysis revealed that the genes mokA, mokB, mokC, mokD, mokE, mokI, and mokH which are involved in MK biosynthesis were significantly up-regulated by SPI. Moreover, the glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid degradation, tricarboxylic acid (TCA) cycle, and amino acid metabolism were effectively up-regulated by SPI. The metabolomic analysis indicated that metabolisms of amino acid, lipid, pyruvate, TCA cycle, glycolysis/gluconeogenesis, starch and sucrose, and pentose phosphate pathway were significantly disturbed by SPI. Thus, MPs and MK production promoted by SPI were mainly attributed to the increased biomass, up-regulated gene expression level, and more precursors and energies. Full article
12 pages, 791 KiB  
Article
Germination-Induced Enhancement of Brown Rice Noodle Nutritional Profile and Gut Microbiota Modulation
by Ruiyun Chen, Huibin Zhang, Jiamei Cai, Mingxi Cai, Taotao Dai, Yunfei Liu and Jianyong Wu
Foods 2024, 13(14), 2279; https://doi.org/10.3390/foods13142279 - 19 Jul 2024
Viewed by 359
Abstract
This study explored how germination influences the starch digestion and intestinal fermentation characteristics of brown rice noodle. The study began with in vitro starch digestion tests to assess how germination affects starch digestibility in brown rice noodles, revealing an increase in rapidly digestible [...] Read more.
This study explored how germination influences the starch digestion and intestinal fermentation characteristics of brown rice noodle. The study began with in vitro starch digestion tests to assess how germination affects starch digestibility in brown rice noodles, revealing an increase in rapidly digestible starch content and a decrease in resistant starch content. Subsequently, an in vitro human fecal fermentation model was used to simulate the human intestinal environment, showing that germination altered pH levels and the production of short-chain fatty acids, particularly by increasing propionate while decreasing acetate and butyrate. Additionally, the study noted a decrease in gut microbiota diversity following fermentation, accompanied by an increase in Megamonas growth and a decrease in Bacteroides and Bifidobacterium. In conclusion, these findings suggest that germination could enhance the nutritional value and intestinal probiotic properties of brown rice noodles. This research contributes valuable insights into the role of germination in improving the nutritional properties of rice-based products and provides a foundation for further exploration into the development of health-promoting rice noodles. Full article
18 pages, 1233 KiB  
Article
Penalties in Granule Size Distribution and Viscosity Parameters of Starch Caused by Lodging in Winter Wheat
by Dianliang Peng, Jingmin Zhang, Lingbin Meng, Mei Liu, Yuhai Tang, Xingcui Wang, Wenxia Yang, Haicheng Xu and Dongqing Yang
Agronomy 2024, 14(7), 1574; https://doi.org/10.3390/agronomy14071574 - 19 Jul 2024
Viewed by 158
Abstract
Granule size distribution of wheat starch is an important characteristic that could affect the functionality of wheat (Triticum aestivum L.) products. Lodging is a major limiting factor for wheat production. Few studies have been conducted to clarify how lodging influences the granule [...] Read more.
Granule size distribution of wheat starch is an important characteristic that could affect the functionality of wheat (Triticum aestivum L.) products. Lodging is a major limiting factor for wheat production. Few studies have been conducted to clarify how lodging influences the granule size distribution and viscosity parameters of starch in wheat grains. Two growing seasons, two high-yield winter wheat cultivars, and five artificial lodging treatments were imposed. The results indicated that lodging significantly reduced the content of starch and increased that of protein. Additionally, lodging caused a marked drop in both starch and protein yields. The relative loss of grain yield, starch yield, harvest index, and protein yield all differed remarkably among lodging treatments with a ranking of L2 > L1 > L4 > L3. Lodging also led to a reduction in the proportion (both by volume and by surface area) of B-type granules and a corresponding increase in that of A-type granules, and the more serious the lodging degree, the greater effect on the changes in these proportions. The smaller starch granules predominated in number, even though their collective contribution to the overall volume is was relatively minor. Meanwhile, it was found that the peak viscosity, hold viscosity, final viscosity, breakdown viscosity, and rebound value of wheat starch were significantly decreased by lodging. Correlation analysis showed that the peak and final viscosities were negatively correlated with volume percentages of A-type starch granules, but were positively correlated with B-type granules. This indicates that B-type granules have higher peak and final viscosities compared with A-type granules in wheat kernels. Lodging can reduce the proportion of B-type starch granules, and thus reduce the peak and the final viscosity in wheat grain. Full article
18 pages, 798 KiB  
Article
Bioconversion of Alternative Substrates for the Biosynthesis of HMG-CoA Reductase Inhibitors by Aspergillus spp. Strains with Antimicrobial Potential
by Uiara M. de B. L. Lins, Rafael de S. Mendonça, Sérgio S. S. Dantas, Adriana Ferreira de Souza, Dayana Montero-Rodríguez, Rosileide F. da S. Andrade and Galba M. Campos-Takaki
Fermentation 2024, 10(7), 367; https://doi.org/10.3390/fermentation10070367 - 18 Jul 2024
Viewed by 190
Abstract
Simvastatin, a semisynthetic drug widely used to lower cholesterol, is among the most prescribed statins worldwide. This study focuses on the direct production of a simvastatin-like biomolecule using alternative substrates by Aspergillus spp. strains. Two species, A. terreus UCP 1276 and A. flavus [...] Read more.
Simvastatin, a semisynthetic drug widely used to lower cholesterol, is among the most prescribed statins worldwide. This study focuses on the direct production of a simvastatin-like biomolecule using alternative substrates by Aspergillus spp. strains. Two species, A. terreus UCP 1276 and A. flavus UCP 0316, were initially evaluated in synthetic media as control. Subsequently, the carbon and nitrogen sources were replaced by agro-industrial substrates, resulting in five modified media. Cultures were maintained at 28°C, pH 6.5, at 180 rpm for 21 days. Fungal growth kinetics were evaluated and a 23 full-factorial design (FFD) was used to investigate the influence of substrate concentration on statin yield. Presence of inhibitors was confirmed by bioassay, UV–visible spectrophotometry, and thin-layer chromatography (TLC). According to the results, A. flavus UCP yielded 0.24 mg/g of statin in condition 2 of FFD (medium containing 4.5% soluble starch and saline base), suggesting it as a promising candidate for direct production of the biomolecule. Statistical analysis showed the significant effect of soluble starch on inhibitor production, making it a viable and profitable alternative substrate. Moreover, the isolated statin exhibited broad-spectrum antimicrobial activity, including efficacy against Gram-negative and Gram-positive bacteria and yeasts, indicating therapeutic potential against antimicrobial resistance. Full article
(This article belongs to the Special Issue Application of Fungi in Bioconversions and Mycoremediation)
24 pages, 6612 KiB  
Article
Impact of a Fruit–Vegetable Preparation Fortified with Potato Starch Resistant Dextrin on Selected Health Indicators in Overweight Children
by Katarzyna Śliżewska, Michał Włodarczyk, Renata Barczyńska, Janusz Kapuśniak, Piotr Socha, Aldona Wierzbicka-Rucińska and Aneta Kotowska
Nutrients 2024, 16(14), 2321; https://doi.org/10.3390/nu16142321 - 18 Jul 2024
Viewed by 422
Abstract
Developing modified dietary fibers that maintain prebiotic benefits without significantly affecting meal taste is of high importance in the midst of the obesity pandemic. These benefits include regulating the composition of gut microbiota, increasing feelings of fullness, and improving human metabolic parameters. This [...] Read more.
Developing modified dietary fibers that maintain prebiotic benefits without significantly affecting meal taste is of high importance in the midst of the obesity pandemic. These benefits include regulating the composition of gut microbiota, increasing feelings of fullness, and improving human metabolic parameters. This study investigated the use of a resistant dextrin (RD) derived from potato starch, which possesses prebiotic properties, as a potential additive in vegetable–fruit preparations that aid weight loss and improve health markers in overweight children. HPLC was employed to examine metabolites like lactic acid, short-chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acids), and branched-chain fatty acids (BCFAs; isobutyric and isovaleric acids). The activities of α-glucosidase, β-glucosidase, α-galactosidase, β-galactosidase, and β-glucuronidase enzymes in fecal samples were measured using spectrophotometric analysis at a wavelength of 400 nm. Incorporating the RD into vegetable–fruit preparations yielded favorable outcomes in terms of increased concentrations of the tested metabolites (SCFAs and BCFAs) and enhanced fecal enzyme activities after 6 months of consuming the preparations. Furthermore, these effects were found to last for an extended period of 3 months even after discontinuing the treatment. The study has shown that including RD into vegetable–fruit preparations enhances the metabolic parameters of obese and overweight children, hence providing a strong rationale for the widespread usage of these preparations in the industry. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

19 pages, 10150 KiB  
Article
Enhancing the Properties of Cement Composites Using Granulated Hemp Shive Aggregates
by Katarzyna Kalinowska-Wichrowska, Magdalena Joka Yildiz, Edyta Pawluczuk, Izabela Zgłobicka, Małgorzata Franus, Wojciech Nietupski and Magdalena Pantoł
Sustainability 2024, 16(14), 6142; https://doi.org/10.3390/su16146142 - 18 Jul 2024
Viewed by 295
Abstract
In recent years, civil engineers have been exploring innovative methods of constructing buildings using environmentally friendly materials. The beneficial properties of hemp harl, an agricultural waste that is gaining popularity in construction, prompted the idea of strengthening its properties through the granulation process [...] Read more.
In recent years, civil engineers have been exploring innovative methods of constructing buildings using environmentally friendly materials. The beneficial properties of hemp harl, an agricultural waste that is gaining popularity in construction, prompted the idea of strengthening its properties through the granulation process and using it as an aggregate in cement composites. This work aimed to investigate whether the use of hemp husk in the form of granules would have a positive effect on the properties of cement composites compared to their traditional form (stems). Potato starch was introduced as an additional factor in the granulation process to improve the material. Experimental tests were carried out on organic fillers, fresh mixtures, and hardened composites. Physical, mechanical, and structural tests (SEM imaging) were carried out. The highest strength was demonstrated by samples containing hemp shive aggregate (1.186 MPa), while the use of hemp shives in the form of granules had a positive effect on the consistency and density, and it also reduced water absorption by 30% during the production of the composite. The apparent density of composites with hemp shives in the form of hemp pellets was higher (1042 ÷ 1506 kg/m3) than in the case of composites with shives in the form of harl (727 ÷ 1160 kg/m3). Nevertheless, hemp shive in both forms can be used as a natural aggregate in cement composites. Full article
Show Figures

Figure 1

19 pages, 4922 KiB  
Article
Revealing the 2300-Year-Old Fermented Beverage in a Bronze Bottle from Shaanxi, China
by Li Liu, Yanglizheng Zhang, Wei Ge, Zhiwei Lin, Nasa Sinnott-Armstrong and Lu Yang
Fermentation 2024, 10(7), 365; https://doi.org/10.3390/fermentation10070365 - 18 Jul 2024
Viewed by 311
Abstract
China has a 9000-year-long history of cereal-based alcohol production, with the use of molds (filamentous fungi) likely being one of the earliest fermentation techniques. This method later developed into the uniquely East Asian qu (koji) starter compound, containing grains, molds, yeasts, and bacteria. [...] Read more.
China has a 9000-year-long history of cereal-based alcohol production, with the use of molds (filamentous fungi) likely being one of the earliest fermentation techniques. This method later developed into the uniquely East Asian qu (koji) starter compound, containing grains, molds, yeasts, and bacteria. Recent studies have revealed that this method was already widely applied during the Neolithic period. However, much less is known about its development during the early dynastic times, and our knowledge of this innovation has mainly relied on textual materials. Here, we present direct evidence, based on microbotanical, microbial, and chemical analyses, for the fermentation method of a 2300-year-old liquid preserved in a sealed bronze bottle unearthed in a Qin tomb at Yancun, Shaanxi. The results of this research suggest that this liquid is likely a fermented beverage made from wheat/barley, rice, Job’s tears, broomcorn millet, and pulses. The fermentation starter may have been a cereal-based qu, consisting of a wide range of microorganisms, including molds (Aspergillus and Monascus), yeasts, and bacteria. Our findings suggest that the tradition of selecting suitable grains and microbial communities for brewing alcohol, possibly with a maiqu starter (primarily wheat/barley-based qu), may have been well established more than two thousand years ago. Full article
(This article belongs to the Special Issue Advances in Beverages, Food, Yeast and Brewing Research, 3rd Edition)
Show Figures

Figure 1

20 pages, 6052 KiB  
Article
Molecular Characteristics and Functional Identification of a Key Alpha-Amylase-Encoding Gene AMY11 in Musa acuminata
by Peiguang Sun, Zhao Zhu, Zhiqiang Jin, Jianghui Xie, Hongxia Miao and Juhua Liu
Int. J. Mol. Sci. 2024, 25(14), 7832; https://doi.org/10.3390/ijms25147832 - 17 Jul 2024
Viewed by 224
Abstract
Alpha-amylase (AMY) plays a significant role in regulating the growth, development, and postharvest quality formation in plants. Nevertheless, little is known about the genome-wide features, expression patterns, subcellular localization, and functional regulation of AMY genes (MaAMYs) in the common starchy banana [...] Read more.
Alpha-amylase (AMY) plays a significant role in regulating the growth, development, and postharvest quality formation in plants. Nevertheless, little is known about the genome-wide features, expression patterns, subcellular localization, and functional regulation of AMY genes (MaAMYs) in the common starchy banana (Musa acuminata). Twelve MaAMY proteins from the banana genome database were clustered into two groups and contained a conserved catalytic domain. These MaAMYs formed collinear pairs with the AMYs of maize and rice. Three tandem gene pairs were found within the MaAMYs and are indicative of putative gene duplication events. Cis-acting elements of the MaAMY promoters were found to be involved in phytohormone, development, and stress responses. Furthermore, MaAMY02, 08, 09, and 11 were actively expressed during fruit development and ripening. Specifically, MaAMY11 showed the highest expression level at the middle and later stages of banana ripening. Subcellular localization showed that MaAMY02 and 11 were predominately found in the chloroplast, whereas MaAMY08 and 09 were primarily localized in the cytoplasm. Notably, transient attenuation of MaAMY11 expression resulted in an obvious increase in the starch content of banana fruit, while a significant decrease in starch content was confirmed through the transient overexpression of MaAMY11. Together, these results reveal new insights into the structure, evolution, and expression patterns of the MaAMY family, affirming the functional role of MaAMY11 in the starch degradation of banana fruit. Full article
(This article belongs to the Special Issue Molecular Research of Tropical Fruit)
17 pages, 1757 KiB  
Article
Enhancing Maize Yield and Quality with Metal-Based Nanoparticles without Translocation Risks: A Brief Field Study
by Dávid Ernst, Marek Kolenčík, Martin Šebesta, Veronika Žitniak Čurná, Yu Qian, Viktor Straka, Ladislav Ducsay, Gabriela Kratošová, Ľuba Ďurišová, Ján Gažo and Juraj Baláži
Plants 2024, 13(14), 1936; https://doi.org/10.3390/plants13141936 - 14 Jul 2024
Viewed by 351
Abstract
Our previous studies have shown physiological and yield intensification of selected crops with the application of nanoparticles (NPs). However, the impact on the quantitative, qualitative, and yield parameters of maize (Zea mays L.) in field conditions remains highly debated. This study aimed [...] Read more.
Our previous studies have shown physiological and yield intensification of selected crops with the application of nanoparticles (NPs). However, the impact on the quantitative, qualitative, and yield parameters of maize (Zea mays L.) in field conditions remains highly debated. This study aimed to evaluate the effects of zinc oxide (ZnO-NPs), gold NPs anchored to meso-biosilica (Au-NP-bioSi), and titanium dioxide (TiO2-NPs) as biological stimulants under field conditions during the vegetation season of 2021 in the Central European region. The study assessed the effects on the number of plants, yield, yield components, and nutritional quality, including mineral nutrients, starch, and crude protein levels. The potential translocation of these chemically–physically stable NPs, which could pose a hazard, was also investigated. The results indicate that Au-NP-bioSi and ZnO-NPs-treatments were the most beneficial for yield and yield components at a statistically significant level. Mineral nutrient outcomes were varied, with the NP-free variant performing the best for phosphorus-levels, while Au-NP-bioSi and ZnO-NPs were optimal for crude protein. Starch content was comparable across the TiO2-NPs, Au-NP-bioSi, and control variants. Importantly, we observed no hazardous translocation of NPs or negative impacts on maize grain quality. This supports the hypothesis that NPs can serve as an effective tool for precise and sustainable agriculture. Full article
Show Figures

Figure 1

23 pages, 8965 KiB  
Article
Novel Starch-Modified NiCrMn-LDH-Based Composite for Photocatalytic Degradation of Reactive Orange 13
by Muhammad Usman, Muhammad Babar Taj, Afaf Almasoudi, Doaa F. Baamer, Omar Makram Ali, Muhammad Imran Khan, Ismat Bibi, Mobeen Ur Rehman, Rabia Rasheed, Ahmad Raheel, Mushtaq Hussain Lashari, Abdallah Shanableh and Javier Fernandez-Garcia
Catalysts 2024, 14(7), 449; https://doi.org/10.3390/catal14070449 - 12 Jul 2024
Viewed by 345
Abstract
Water pollution has become a great challenge today. To address this problem regarding wastewater treatment by removing toxic synthetic dyes from wastewater, this research focused on the synthesis of a novel starch-modified NiCrMn-layered double hydroxide composite through the coprecipitation method and applied it [...] Read more.
Water pollution has become a great challenge today. To address this problem regarding wastewater treatment by removing toxic synthetic dyes from wastewater, this research focused on the synthesis of a novel starch-modified NiCrMn-layered double hydroxide composite through the coprecipitation method and applied it as a photocatalyst for the degradation of reactive orange 13 dye. The synthesized photocatalyst was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), point of zero charges (PZC), dynamic light scattering (DLS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Zeta potential techniques. These techniques revealed different characteristics of photocatalysts, like surface and structural properties. According to BET analysis, the final composite had 2.5 × 102 m2/g BET-specific surface area with a 45.56 nm pore radius value, and the overall composite found as mesoporous. Similarly, in DLS analysis, bare NiCrMn-LDH had 404 nm hydrodynamic size, which increased for the final starch composite up to 667 nm. Zeta potential value changed from −14.56 mV to 0.95 mV after the incorporation of starch with NiCrMn-LDH. They confirmed the incorporation of starch with trimetallic NiCrMn-layered double hydroxide (2:1:2). Starch association improved the properties of the photocatalyst like surface area. Different parameters like pH value, initial dye concentration, photocatalyst dose, hydrogen peroxide concentration, effect of sacrificial reagent, and effect of inorganic anions were studied for degradation of RO13. Overall, the photocatalysis process for RO13 followed pseudo-first-order kinetics. Photocatalytic degradation reactions for reactive orange 13 were conducted with an initial dye concentration of 10 mg/L, photocatalyst dosage of 20 mg/50 mL, and pH value at 3 in the presence of sunlight, resulting in an impressive degradation removal rate of 86.68%. This remarkable degradation ability of the photocatalyst for reactive orange 13 proves this composite was highly efficient. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

12 pages, 2165 KiB  
Article
Transcriptomic and Metabolomic Analyses Provide New Insights into the Response of Strawberry (Fragaria × ananassa Duch.) to Drought Stress
by Lili Jiang, Ruimin Song, Xiaofang Wang, Jie Wang and Chong Wu
Horticulturae 2024, 10(7), 734; https://doi.org/10.3390/horticulturae10070734 - 12 Jul 2024
Viewed by 305
Abstract
Strawberry plants have shallow roots and large leaves, which are highly sensitive to variations in water levels. To explore the physicochemical and molecular mechanisms of strawberry response to water stress, and provide new ideas for strawberry scientific irrigation, we measured the transpiration rate, [...] Read more.
Strawberry plants have shallow roots and large leaves, which are highly sensitive to variations in water levels. To explore the physicochemical and molecular mechanisms of strawberry response to water stress, and provide new ideas for strawberry scientific irrigation, we measured the transpiration rate, fresh weight, biomass gain, and other indicators of potted “Zhangji” strawberry plants under drought and waterlogging treatments using a Plantarray system. Transcriptomic and metabolomic analyses of strawberry leaves following mild drought, moderate drought, severe drought, and rehydration treatments were performed to identify key genes and metabolites involved in the response to drought stress. Below a certain threshold, the transpiration rate of strawberry plants was significantly lower after the deficit irrigation treatment than the conventional water treatment. Transcriptome analysis revealed that genes involved in oxidoreductase activity and in sulfur and nitrogen metabolism were up-regulated, as well as starch and sucrose. Strawberry plants secrete various endogenous growth hormones to maintain their normal growth under drought stress. The syntheses of salicylic acid (SA) and abscisic acid (ABA) were up-regulated in the mild and moderate drought treatments. However, the syntheses of 1-aminocyclopropanecarboxylic acid (ACC) and indole-3-acetic acid (IAA) were down-regulated in severe drought treatment and up-regulated in rehydration after severe drought treatment. Full article
(This article belongs to the Special Issue Advances in Developmental Biology in Tree Fruit and Nut Crops)
Show Figures

Figure 1

Back to TopTop