Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (489)

Search Parameters:
Keywords = thermal instability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8060 KiB  
Article
Investigation of Convective Heat Transfer and Stability on a Rotating Disk: A Novel Experimental Method and Thermal Modeling
by Yusuf Cati, Stefan aus der Wiesche and Mesut Düzgün
Fluids 2024, 9(7), 167; https://doi.org/10.3390/fluids9070167 - 22 Jul 2024
Viewed by 305
Abstract
Experimental and numerical investigations are conducted on a rotating disk from the perspective of convective heat transfer to understand the effect of heating on the stability of flow. A non-invasive approach with a thermal camera is employed to determine local Nusselt numbers for [...] Read more.
Experimental and numerical investigations are conducted on a rotating disk from the perspective of convective heat transfer to understand the effect of heating on the stability of flow. A non-invasive approach with a thermal camera is employed to determine local Nusselt numbers for different rotational rates and perturbation parameters, i.e., the strength of the heat transfer. A novel transient temperature data extraction over the disk radius and an evaluation method are developed and applied for the first time for the air on a rotating disk. The evaluation method utilizes the lumped capacitance approach with a constant heat flux input. Nusselt number distributions from this experimental study show that there is a good agreement with the previous experimental correlations and linear stability analysis on the subject. A significant result of this approach is that by using the experimental setup and developed approach, it is possible to qualitatively show that instability in the flow starts earlier, i.e., an earlier departure from laminar behavior is observed at lower rotational Reynolds numbers with an increasing perturbation parameter, which is due to the strength of heating. Two experimental setups are modeled and simulated using a validated in-house Python code, featuring a three-dimensional thermal model of the disk. The thermal code was developed for the rotating disks and brake disks with a simplified geometry. Experimentally evaluated heat transfer coefficients are implemented and used as convective boundary conditions in the thermal code. Radial temperature distributions are compared with the experimental data, and there is good agreement between the experiment and the model. The model was used to evaluate the effect of radial conduction, which is neglected when using the lumped capacitance approach to determine heat transfer coefficients. It was observed that the radial conduction has a slight effect. The methodology and approach used in this experimental study, combined with the numerical model, can be used for further investigations on the subject. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

19 pages, 11144 KiB  
Article
Preparation and Mechanism of Shale Inhibitor TIL-NH2 for Shale Gas Horizontal Wells
by Yuexin Tian, Xiangjun Liu, Yintao Liu, Haifeng Dong, Guodong Zhang, Biao Su and Jinjun Huang
Molecules 2024, 29(14), 3403; https://doi.org/10.3390/molecules29143403 - 19 Jul 2024
Viewed by 370
Abstract
In this study, a new polyionic polymer inhibitor, TIL-NH2, was developed to address the instability of shale gas horizontal wells caused by water-based drilling fluids. The structural characteristics and inhibition effects of TIL-NH2 on mud shale were comprehensively analyzed using [...] Read more.
In this study, a new polyionic polymer inhibitor, TIL-NH2, was developed to address the instability of shale gas horizontal wells caused by water-based drilling fluids. The structural characteristics and inhibition effects of TIL-NH2 on mud shale were comprehensively analyzed using infrared spectroscopy, NMR spectroscopy, contact angle measurements, particle size distribution, zeta potential, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The results demonstrated that TIL-NH2 significantly enhances the thermal stability of shale, with a decomposition temperature exceeding 300 °C, indicating excellent high-temperature resistance. At a concentration of 0.9%, TIL-NH2 increased the median particle size of shale powder from 5.2871 μm to over 320 μm, effectively inhibiting hydration expansion and dispersion. The zeta potential measurements showed a reduction in the absolute value of illite’s zeta potential from −38.2 mV to 22.1 mV at 0.6% concentration, highlighting a significant decrease in surface charge density. Infrared spectroscopy and X-ray diffraction confirmed the formation of a close adsorption layer between TIL-NH2 and the illite surface through electrostatic and hydrogen bonding, which reduced the weakly bound water content to 0.0951% and maintained layer spacing of 1.032 nm and 1.354 nm in dry and wet states, respectively. Thermogravimetric analysis indicated a marked reduction in heat loss, particularly in the strongly bound water content. Scanning electron microscopy revealed that shale powder treated with TIL-NH2 exhibited an irregular bulk shape with strong inter-particle bonding and low hydration degree. These findings suggest that TIL-NH2 effectively inhibits hydration swelling and dispersion of shale through the synergistic effects of cationic imidazole rings and primary amine groups, offering excellent temperature and salt resistance. This provides a technical foundation for the low-cost and efficient extraction of shale gas in horizontal wells. Full article
(This article belongs to the Topic Energy Extraction and Processing Science)
Show Figures

Figure 1

26 pages, 4191 KiB  
Article
A Density Functional Theory Study of the Physico-Chemical Properties of Alkali Metal Titanate Perovskites for Solar Cell Applications
by Shirzad Jouybar, Leila Naji, Saeedeh Sarabadani Tafreshi and Nora H. de Leeuw
Molecules 2024, 29(14), 3355; https://doi.org/10.3390/molecules29143355 - 17 Jul 2024
Viewed by 570
Abstract
The urgent need to shift from non-renewable to renewable energy sources has caused widespread interest in photovoltaic technologies that allow us to harness readily available and sustainable solar energy. In the past decade, polymer solar cells (PSCs) and perovskite solar cells (Per-SCs) have [...] Read more.
The urgent need to shift from non-renewable to renewable energy sources has caused widespread interest in photovoltaic technologies that allow us to harness readily available and sustainable solar energy. In the past decade, polymer solar cells (PSCs) and perovskite solar cells (Per-SCs) have gained attention owing to their low price and easy fabrication process. Charge transport layers (CTLs), transparent conductive electrodes (TCEs), and metallic top electrodes are important constituents of PSCs and Per-SCs, which affect the efficiency and stability of these cells. Owing to the disadvantages of current materials, including instability and high cost, the development of alternative materials has attracted significant attention. Owing to their more flexible physical and chemical characteristics, ternary oxides are considered to be appealing alternatives, where ATiO3 materials—a class of ternary perovskite oxides—have demonstrated considerable potential for applications in solar cells. Here, we have employed calculations based on the density functional theory to study the structural, optoelectronic, and magnetic properties of ATiO3 (A=Li, Na, K, Rb, and Cs) in different crystallographic phases to determine their potential as PSCs and Per-SCs materials. We have also determined thermal and elastic properties to evaluate their mechanical and thermal stability. Our calculations have revealed that KTiO3 and RbTiO3 possess similar electronic properties as half-metallic materials, while LiTiO3 and CsTiO3 are metallic. Semiconductor behavior with a direct band gap of 2.77 eV was observed for NaTiO3, and calculations of the optical and electronic properties predicted that NaTiO3 is the most appropriate candidate to be employed as a charge transfer layer (CTL) and bottom transparent conducting electrode (TCE) in PSCs and Per-SCs, owing to its transparency and large bandgap, whereas NaTiO3 also provided superior elastic and thermal properties. Among the metallic and half-metallic ATiO3 compounds, CsTiO3 and KTiO3 exhibited the most appropriate features for the top electrode and additional absorbent in the active layer, respectively, to enhance the performance and stability of these cells. Full article
Show Figures

Figure 1

21 pages, 9158 KiB  
Article
Research on Low-Carbon Design and Energy Efficiency by Harnessing Indigenous Resources through BIM-Ecotect Analysis in Hot Climates
by Habib Ullah, Hong Zhang, Hongyu Ye, Ihsan Ali and Meng Cong
Sustainability 2024, 16(14), 6057; https://doi.org/10.3390/su16146057 - 16 Jul 2024
Viewed by 481
Abstract
In the face of contemporary challenges, such as economic instability, environmental degradation, and the urgent global warming crisis, the imperative of sustainability and energy efficiency has reached unparalleled significance. Sustainability encompasses not only the natural environment, but also extends to our immediate surroundings, [...] Read more.
In the face of contemporary challenges, such as economic instability, environmental degradation, and the urgent global warming crisis, the imperative of sustainability and energy efficiency has reached unparalleled significance. Sustainability encompasses not only the natural environment, but also extends to our immediate surroundings, including the built structures and the communities they serve. Embracing this comprehensive perspective, we embarked on a mission to conceive and construct a model house that harnesses state-of-the-art energy-efficient technologies. Our goal was to seamlessly integrate these features not only to meet our sustainability objectives, but also to mitigate environmental threats.This model embodies a harmonious fusion of indigenous resources, employing locally sourced stone and employing traditional construction techniques. Through this approach, we achieved significant reductions in carbon emissions and established a framework for passive cooling and heating systems. Moreover, the design is intrinsically attuned to its contextual surroundings, preserving the diverse tapestry of regional architectural styles. This study stands as a testament to the potential of innovative design and technology in shaping a sustainable future. The research employs a multi-dimensional approach, encompassing strategies of architectural design with a traditional planning approach, sustainable material selection, energy efficiency, and life cycle assessment across a diverse set of case studies. Building energy analysis is conducted through the application of BIM (Ecotect), providing insights into how BIM can adapt and thrive in various environments. Key findings underscore that thermal performance, minimizing energy loads, and reducing carbon emissions are pivotal aspects in designating a building as both green and energy efficient. Full article
Show Figures

Figure 1

18 pages, 14824 KiB  
Article
Stability Studies of Amorphous Ibrutinib Prepared Using the Quench-Cooling Method and Its Dispersions with Soluplus®
by Igor Mucha, Bożena Karolewicz and Agata Górniak
Polymers 2024, 16(14), 1961; https://doi.org/10.3390/polym16141961 (registering DOI) - 9 Jul 2024
Viewed by 480
Abstract
The successful development of an amorphous form of a drug demands the use of process conditions and materials that reduce their thermodynamic instability. For the first time, we have prepared amorphous ibrutinib using the quench-cooling method with very high process efficiency. In the [...] Read more.
The successful development of an amorphous form of a drug demands the use of process conditions and materials that reduce their thermodynamic instability. For the first time, we have prepared amorphous ibrutinib using the quench-cooling method with very high process efficiency. In the presented study, different formulations of amorphous active pharmaceutical ingredient (API) with Soluplus (SOL) in various weight ratios 1:9, 3:7, and 1:1 were prepared. The obtained samples were stored under long-term (25 ± 2 °C/60%RH ± 5% RH, 12 months) and accelerated (40 ± 2 °C/75%RH ± 5% RH, 6 months) storage conditions. The physical stability of amorphous ibrutinib and ibrutinib–Soluplus formulations was analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), powder X-ray diffraction analysis (XRPD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The lack of significant interactions between the ingredients of the formulation was confirmed by FTIR analysis. An increase in moisture content with an increasing SOL weight ratio was observed under accelerated aging and long-term conditions. Additionally, a slight increase in the moisture content of the stored sample compared to that at the initial time was observed. The results revealed the physical strength of the polymeric systems in the presence of high humidity and temperature. The observed high thermal stability allows the use of various technological processes without the risk of thermal degradation. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery)
Show Figures

Figure 1

26 pages, 8057 KiB  
Article
Evaluation of Thermal Insulation of Vacuum-Insulated Casing to Prevent Uncontrollable Melting of Ice and Borehole Instability in Permafrost
by Xiaohui Zhou, Yinao Su, Yuanfang Cheng and Qingchao Li
Processes 2024, 12(7), 1389; https://doi.org/10.3390/pr12071389 - 3 Jul 2024
Viewed by 537
Abstract
During oil and gas development in permafrost, hot fluids within the wellbore can cause ice melting around wellbore and a decrease in sediment strength, as well as wellbore instability. In the present work, the experimental system for evaluating the insulation effectiveness was established, [...] Read more.
During oil and gas development in permafrost, hot fluids within the wellbore can cause ice melting around wellbore and a decrease in sediment strength, as well as wellbore instability. In the present work, the experimental system for evaluating the insulation effectiveness was established, and the applicability of this experimental system and methodology was verified. It was found that the difference between the experimentally obtained and actual thermal conductivity of the ordinary casings are all within 1.0 W/(m·°C). Meanwhile, the evaluation of insulation effect found that the decrease in fluid temperature, ambient temperature, and vacuum degree can improve its insulation performance. Finally, the numerical simulation was conducted on ice melting and borehole stability during the drilling operation in permafrost. The investigation results demonstrate that the use of vacuum-insulated casings significantly reduces the total heat transferred during the simulation by 86.72% compared to the ordinary casing. The utilization of vacuum-insulated casing reduces the range of ice melting around wellbore to only 16%, which occurs when using ordinary casing. The use of the vacuum-insulated casing resulted in a reduction in the final borehole enlargement rate from 52.1% to 4.2%, and wellbore instability was effectively suppressed. Full article
Show Figures

Figure 1

29 pages, 17913 KiB  
Article
Analysis of Bending Deformation and Stress of 6063-T5 Aluminum Alloy Multi-Cavity Tube Filled with Liquid
by Xinlong Zhang, Zhaosong Jiang, Shuang Zhao, Xiaodong Xie, Jiang Xiao, Xueyan Liu, Zhe Wu and Yang Zhang
Materials 2024, 17(13), 3230; https://doi.org/10.3390/ma17133230 - 1 Jul 2024
Viewed by 416
Abstract
The production of aluminum alloy multi-lumen tubes primarily involves hot bending formation, a process where controlling thermal deformation quality is difficult. Specifically, the inner cavity wall of the tube is prone to bending instability defects under the bending stress field. To address these [...] Read more.
The production of aluminum alloy multi-lumen tubes primarily involves hot bending formation, a process where controlling thermal deformation quality is difficult. Specifically, the inner cavity wall of the tube is prone to bending instability defects under the bending stress field. To address these challenges in the bending deformation of aluminum alloy multi-lumen tubes, a multi-lumen liquid-filled bypass forming method is proposed in this paper. This study focuses on the 6063-T5 aluminum alloy double-lumen tube as the research object. The liquid-filled bending deformation behavior of the aluminum alloy double-lumen tube was investigated, and the deformation theory of the aluminum alloy double-lumen tube was studied. Through experimental and numerical simulation methods, the influence of support internal pressure, bending radius, and tube wall thickness on the liquid-filled bending deformation behavior of the double-lumen tube was examined. The results indicate that when the value of internal pressure was 7.5 MPa, the straightening of the outer wall was improved by 2.51%, the thinning rate of wall thickness was minimized, and the internal concave defect was effectively suppressed. The liquid-filled bending method provides a promising new approach for the integrated bending and forming of multi-lumen tubes. Full article
Show Figures

Figure 1

17 pages, 6407 KiB  
Article
Research on Forging Dimension Online Measuring System Based on Vibration Point Cloud Compensation
by Shaoshun Bian, Bin Zhang, Xiuhong Han, Mingxin Yuan, Jiawei Xu and Debin Shan
Electronics 2024, 13(13), 2494; https://doi.org/10.3390/electronics13132494 - 26 Jun 2024
Viewed by 758
Abstract
Mechanical vibration in the high-temperature forging production line often causes large forging thermal dimensional measurement error in the detection task, so a vibration point cloud compensation method based on an acceleration sensor is proposed in this study. First, the vibration signal is obtained [...] Read more.
Mechanical vibration in the high-temperature forging production line often causes large forging thermal dimensional measurement error in the detection task, so a vibration point cloud compensation method based on an acceleration sensor is proposed in this study. First, the vibration signal is obtained through the built-in acceleration sensor in the laser camera. After the acceleration of the camera vibration is detected, the displacement of the camera in three directions is solved by secondary integration. Subsequently, the coordinate value of the corresponding point is obtained by the rotation matrix transformation so as to compensate and correct the point cloud deviation caused by the camera vibration. Finally, the forging point cloud is matched using the surface matching algorithm in Halcon. An automatic forging production line for wheel hubs has been built, and the key dimensions of high-temperature forging products have been measured online using the developed method. After the forging point cloud is compensated, the average measurement error of dimensions is reduced from ±0.9 mm to ±0.1 mm, and the standard deviation is reduced from 0.52 mm to 0.056 mm. Using the vibration point cloud compensation method based on the acceleration sensor, as well as using silica aerogel insulation, vibration structural parts, heat insulation and constant temperature, a blue-violet 3D laser camera, and other measures, the dimensional detection accuracy of high-temperature forgings in the forging production line can be improved, and the instability of dimensional detection can be reduced. Full article
(This article belongs to the Special Issue Advanced Technologies in Robotics and Smart Manufacturing)
Show Figures

Figure 1

17 pages, 3405 KiB  
Article
Chitosan–Type-A-Gelatin Hydrogels Used as Potential Platforms in Tissue Engineering for Drug Delivery
by Hanaa Mehdi-Sefiani, Carmen Mª Granados-Carrera, Alberto Romero, Ernesto Chicardi, Juan Domínguez-Robles and Víctor Manuel Perez-Puyana
Gels 2024, 10(7), 419; https://doi.org/10.3390/gels10070419 - 26 Jun 2024
Viewed by 1660
Abstract
Hydrogels are materials made of crosslinked 3D networks of hydrophilic polymer chains that can absorb and retain significant amounts of water due to their hydrophilic structure without being dissolved. In relation to alternative biomaterials, hydrogels offer increased biocompatibility and biodegradability, giving them distinct [...] Read more.
Hydrogels are materials made of crosslinked 3D networks of hydrophilic polymer chains that can absorb and retain significant amounts of water due to their hydrophilic structure without being dissolved. In relation to alternative biomaterials, hydrogels offer increased biocompatibility and biodegradability, giving them distinct advantages. Thus, hydrogel platforms are considered to have the potential for the development of biomedical applications. In this study, the main objective was the development of hybrid hydrogels to act as a drug delivery platform. These hydrogels were made from chitosan (CH) and type A gelatin (G), two natural polymers that provide a supportive environment for cellular attachment, viability, and growth, thanks to their unique properties. Particularly, the use of gelatins for drug delivery systems provides biodegradability, biocompatibility, and non-toxicity, which are excellent properties to be used in the human body. However, gelatins have some limitations, such as thermal instability and poor mechanical properties. In order to improve those properties, the aim of this work was the development and characterization of hybrid hydrogels with different ratios of CH–G (100–0, 75–25, 50–50, 25–75, 0–100). Hydrogels were characterized through multiple techniques, including Fourier transform infrared (FTIR) spectroscopy, rheological and microstructural studies, among others. Moreover, a model hydrophilic drug molecule (tetracycline) was incorporated to evaluate the feasibility of this platform to sustain the release of hydrophilic drugs, by being tested in a solution of Phosphate Buffer Solution at a pH of 7.2 and at 37 °C. The results revealed that the synergy between chitosan and type A gelatin improved the mechanical properties as well as the thermal stability of it, revealing that the best ratios of the biopolymers are 50–50 CH–G and 75–25 CH–G. Thereby, these systems were evaluated in a controlled release of tetracycline, showing a controlled drug delivery of 6 h and highlighting their promising application as a platform for controlled drug release. Full article
Show Figures

Figure 1

16 pages, 5933 KiB  
Article
Learning Flame Evolution Operator under Hybrid Darrieus Landau and Diffusive Thermal Instability
by Rixin Yu, Erdzan Hodzic and Karl-Johan Nogenmyr
Energies 2024, 17(13), 3097; https://doi.org/10.3390/en17133097 - 23 Jun 2024
Viewed by 439
Abstract
Recent advancements in the integration of artificial intelligence (AI) and machine learning (ML) with physical sciences have led to significant progress in addressing complex phenomena governed by nonlinear partial differential equations (PDEs). This paper explores the application of novel operator learning methodologies to [...] Read more.
Recent advancements in the integration of artificial intelligence (AI) and machine learning (ML) with physical sciences have led to significant progress in addressing complex phenomena governed by nonlinear partial differential equations (PDEs). This paper explores the application of novel operator learning methodologies to unravel the intricate dynamics of flame instability, particularly focusing on hybrid instabilities arising from the coexistence of Darrieus–Landau (DL) and Diffusive–Thermal (DT) mechanisms. Training datasets encompass a wide range of parameter configurations, enabling the learning of parametric solution advancement operators using techniques such as parametric Fourier Neural Operator (pFNO) and parametric convolutional neural networks (pCNNs). Results demonstrate the efficacy of these methods in accurately predicting short-term and long-term flame evolution across diverse parameter regimes, capturing the characteristic behaviors of pure and blended instabilities. Comparative analyses reveal pFNO as the most accurate model for learning short-term solutions, while all models exhibit robust performance in capturing the nuanced dynamics of flame evolution. This research contributes to the development of robust modeling frameworks for understanding and controlling complex physical processes governed by nonlinear PDEs. Full article
(This article belongs to the Special Issue Towards Climate Neutral Thermochemical Energy Conversion)
Show Figures

Figure 1

23 pages, 2663 KiB  
Article
Evaluation of Thermal and Mechanical Properties of Foamed Phosphogypsum-Based Cementitious Materials for Well Cementing in Hydrate Reservoirs
by Jiadi Tang, Yusheng Zhao, Wan Cheng, Tianle Liu, Guokun Yang, Mingsheng Chen, Gang Lei, Jian Xu and Yongning Huang
J. Mar. Sci. Eng. 2024, 12(7), 1056; https://doi.org/10.3390/jmse12071056 - 23 Jun 2024
Viewed by 455
Abstract
As detrimental byproduct waste generated during the production of fertilizers, phosphogypsum can be harmlessly treated by producing phosphogypsum-based cementitious materials (PGCs) for offshore well cementing in hydrate reservoirs. To be specific, the excellent mechanical properties of PGCs significantly promote wellbore stability. And the [...] Read more.
As detrimental byproduct waste generated during the production of fertilizers, phosphogypsum can be harmlessly treated by producing phosphogypsum-based cementitious materials (PGCs) for offshore well cementing in hydrate reservoirs. To be specific, the excellent mechanical properties of PGCs significantly promote wellbore stability. And the preeminent temperature control performance of PGCs helps to control undesirable gas channeling, increasing the formation stability of natural gas hydrate (NGH) reservoirs. Notably, to further enhance temperature control performance, foaming agents are added to PGCs to increase porosity, which however reduces the compressive strength and increases the risk of wellbore instability. Therefore, the synergetic effect between temperature control performance and mechanical properties should be quantitatively evaluated to enhance the overall performance of foamed PGCs for well cementing in NGH reservoirs. But so far, most existing studies of foamed PGCs are limited to experimental work and ignore the synergetic effect. Motivated by this, we combine experimental work with theoretical work to investigate the correlations between the porosity, temperature control performance, and mechanical properties of foamed PGCs. Specifically, the thermal conductivity and compressive strength of foamed PGCs are accurately determined through experimental measurements, then theoretical models are proposed to make up for the non-repeatability of experiments. The results show that, when the porosity increases from 6% to 70%, the 7 d and 28 d compressive strengths of foamed PGCs respectively decrease from 21.3 MPa to 0.9 MPa and from 23.5 MPa to 1.0 MPa, and the thermal conductivity decreases from 0.33 W·m−1·K−1 to 0.12 W·m−1·K−1. Additionally, an overall performance index evaluation system is established, advancing the application of foamed PGCs for well cementing in NGH reservoirs and promoting the recycling of phosphogypsum. Full article
(This article belongs to the Special Issue Production Prediction in Onshore and Offshore Tight Reservoirs)
Show Figures

Figure 1

38 pages, 513 KiB  
Review
Thermodynamics and Decay of de Sitter Vacuum
by Grigory E. Volovik
Symmetry 2024, 16(6), 763; https://doi.org/10.3390/sym16060763 - 18 Jun 2024
Viewed by 777
Abstract
We discuss the consequences of the unique symmetry of de Sitter spacetime. This symmetry leads to the specific thermodynamic properties of the de Sitter vacuum, which produces a thermal bath for matter. de Sitter spacetime is invariant under the modified translations, [...] Read more.
We discuss the consequences of the unique symmetry of de Sitter spacetime. This symmetry leads to the specific thermodynamic properties of the de Sitter vacuum, which produces a thermal bath for matter. de Sitter spacetime is invariant under the modified translations, rreHta, where H is the Hubble parameter. For H0, this symmetry corresponds to the conventional invariance of Minkowski spacetime under translations rra. Due to this symmetry, all the comoving observers at any point of the de Sitter space perceive the de Sitter environment as the thermal bath with temperature T=H/π, which is twice as large as the Gibbons–Hawking temperature of the cosmological horizon. This temperature does not violate de Sitter symmetry and, thus, does not require the preferred reference frame, as distinct from the thermal state of matter, which violates de Sitter symmetry. This leads to the heat exchange between gravity and matter and to the instability of the de Sitter state towards the creation of matter, its further heating, and finally the decay of the de Sitter state. The temperature T=H/π determines different processes in the de Sitter environment that are not possible in the Minkowski vacuum, such as the process of ionization of an atom in the de Sitter environment. This temperature also determines the local entropy of the de Sitter vacuum state, and this allows us to calculate the total entropy of the volume inside the cosmological horizon. The result reproduces the Gibbons–Hawking area law, which is attributed to the cosmological horizon, Shor=4πKA, where K=1/(16πG). This supports the holographic properties of the cosmological event horizon. We extend the consideration of the local thermodynamics of the de Sitter state using the f(R) gravity. In this thermodynamics, the Ricci scalar curvature R and the effective gravitational coupling K are thermodynamically conjugate variables. The holographic connection between the bulk entropy of the Hubble volume and the surface entropy of the cosmological horizon remains the same but with the gravitational coupling K=df/dR. Such a connection takes place only in the 3+1 spacetime, where there is a special symmetry due to which the variables K and R have the same dimensionality. We also consider the lessons from de Sitter symmetry for the thermodynamics of black and white holes. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry: Feature Review Papers 2024)
18 pages, 7967 KiB  
Article
Effect of the Lys62Ala Mutation on the Thermal Stability of BstHPr Protein by Molecular Dynamics
by Aranza C. Martínez-Zacarias, Edgar López-Pérez and Salomón J. Alas-Guardado
Int. J. Mol. Sci. 2024, 25(12), 6316; https://doi.org/10.3390/ijms25126316 - 7 Jun 2024
Viewed by 468
Abstract
We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. [...] Read more.
We analyzed the thermal stability of the BstHPr protein through the site-directed point mutation Lys62 replaced by Ala residue using molecular dynamics simulations at five different temperatures: 298, 333, 362, 400, and 450 K, for periods of 1 μs and in triplicate. The results from the mutant thermophilic BstHPrm protein were compared with those of the wild-type thermophilic BstHPr protein and the mesophilic BsHPr protein. Structural and molecular interaction analyses show that proteins lose stability as temperature increases. Mutant and wild-type proteins behave similarly up to 362 K. However, at 400 K the mutant protein shows greater structural instability, losing more buried hydrogen bonds and exposing more of its non-polar residues to the solvent. Therefore, in this study, we confirmed that the salt bridge network of the Glu3–Lys62–Glu36 triad, made up of the Glu3–Lys62 and Glu36–Lys62 ion pairs, provides thermal stability to the thermophilic BstHPr protein. Full article
(This article belongs to the Special Issue Protein Stability Research: 2nd Edition)
Show Figures

Graphical abstract

29 pages, 4818 KiB  
Article
From Bin to Binder: Unleashing Waste Butter’s Potential as a Pioneering Bio-Modifier for Sustainable Asphalt Engineering
by Nader Nciri and Namho Kim
Sustainability 2024, 16(11), 4774; https://doi.org/10.3390/su16114774 - 4 Jun 2024
Viewed by 623
Abstract
Exploring the interface of environmental sustainability and civil infrastructure development, this study introduces waste butter (WB), a byproduct of animal fat processing, as a novel bio-modifier in asphalt production. This approach not only recycles animal waste but also charts a course for sustainable [...] Read more.
Exploring the interface of environmental sustainability and civil infrastructure development, this study introduces waste butter (WB), a byproduct of animal fat processing, as a novel bio-modifier in asphalt production. This approach not only recycles animal waste but also charts a course for sustainable infrastructural development, contributing to a reduced environmental impact and promoting circular economy practices. The experiments incorporated varying WB concentrations (e.g., 3%, 6%, and 9% by weight of binder) into standard AP-5 asphalt, employing advanced analytical tools for comprehensive characterization. These included thin-layer chromatography–flame ionization detection (TLC-FID), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Differential Scanning Calorimetry (DSC). The critical properties of the asphalt blends, such as penetration, softening point, viscosity, ductility, rutting factor (Dynamic Shear Rheometer), and thermal susceptibility (Penetration Index, Penetration–Viscosity Number), were assessed. FT-IR analysis indicated negligible chemical alteration with WB addition, suggesting predominantly physical interactions. TLC-FID showed a decrease in aromatic and asphaltene components but an increase in resin content, highlighting the influence of WB’s fatty acids on the asphalt’s chemical balance. The colloidal instability index (IC) confirmed enhanced stability due to WB’s high resin concentration. Meanwhile, SEM analysis revealed microstructural improvements with WB, enhancing binder compatibility. TGA demonstrated that even a minimal 3 wt. % WB addition significantly improved thermal stability, while the DSC results pointed to improved low-temperature performance, reducing brittleness in cold conditions. Rheologically, WB incorporation resulted in increased penetration and ductility, balanced by decreased viscosity and softening point, thereby demonstrating its multi-faceted utility. Thermal susceptibility tests emphasized WB’s effectiveness in cold environments, with further evaluation needed at higher temperatures. The DSR findings necessitate careful WB calibration to meet Superpave rutting standards. In conclusion, this research positions waste butter as a superior, environmentally aligned bio-additive for asphalt blends, contributing significantly to eco-friendly civil engineering practices by repurposing animal-derived waste. Full article
Show Figures

Graphical abstract

17 pages, 3512 KiB  
Article
Preparation and Characterization of a Novel Longzhua mushroom Polysaccharide Hydrogel and Slow-Release Behavior of Encapsulated Rambutan Peel Polyphenols
by Lingxin Zhao, Jiapeng Li, Yangyue Ding and Liping Sun
Foods 2024, 13(11), 1711; https://doi.org/10.3390/foods13111711 - 29 May 2024
Viewed by 386
Abstract
Natural polyphenols have drawbacks such as instability and low bioavailability, which can be overcome by encapsulated slow-release systems. Natural polymer hydrogels are ideal materials for slow-release systems because of their high biocompatibility. In this study, Longzhua mushroom polysaccharide hydrogel (LMPH) was used to [...] Read more.
Natural polyphenols have drawbacks such as instability and low bioavailability, which can be overcome by encapsulated slow-release systems. Natural polymer hydrogels are ideal materials for slow-release systems because of their high biocompatibility. In this study, Longzhua mushroom polysaccharide hydrogel (LMPH) was used to encapsulate rambutan peel polyphenols (RPP) and delay their release time to improve their stability and bioavailability. The mechanical properties, rheology, stability, swelling properties, water-holding capacity, RPP loading, and slow-release behavior of LMPH were investigated. The results showed that LMPH has adequate mechanical and rheological properties, high thermal stability, excellent swelling and water-holding capacity, and good self-healing behavior. Increasing the polysaccharide content not only improved the hardness (0.17–1.13 N) and water-holding capacity of LMPH (90.84–99.32%) but also enhanced the encapsulation efficiency of RPP (93.13–99.94%). The dense network structure slowed down the release of RPP. In particular, LMPH5 released only 61.58% at 48 h. Thus, a stable encapsulated slow-release system was fabricated using a simple method based on the properties of LMPH. The developed material has great potential for the sustained release and delivery of biologically active substances. Full article
Show Figures

Figure 1

Back to TopTop