Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = vector competence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8930 KiB  
Article
Aedes Mosquito Virome in Southwestern Cameroon: Lack of Core Virome, But a Very Rich and Diverse Virome in Ae. africanus Compared to Other Aedes Species
by Karelle Celes Mbigha Donfack, Lander De Coninck, Stephen Mbigha Ghogomu and Jelle Matthijnssens
Viruses 2024, 16(7), 1172; https://doi.org/10.3390/v16071172 (registering DOI) - 21 Jul 2024
Abstract
In Cameroon, Aedes mosquitoes transmit various arboviruses, posing significant health risks. We aimed to characterize the Aedes virome in southwestern Cameroon and identify potential core viruses which might be associated with vector competence. A total of 398 Aedes mosquitoes were collected from four [...] Read more.
In Cameroon, Aedes mosquitoes transmit various arboviruses, posing significant health risks. We aimed to characterize the Aedes virome in southwestern Cameroon and identify potential core viruses which might be associated with vector competence. A total of 398 Aedes mosquitoes were collected from four locations (Bafoussam, Buea, Edea, and Yaounde). Aedes albopictus dominated all sites except for Bafoussam, where Aedes africanus prevailed. Metagenomic analyses of the mosquitoes grouped per species into 54 pools revealed notable differences in the eukaryotic viromes between Ae. africanus and Ae. albopictus, with the former exhibiting greater richness and diversity. Thirty-seven eukaryotic virus species from 16 families were identified, including six novel viruses with near complete genome sequences. Seven viruses were further quantified in individual mosquitoes via qRT-PCR. Although none of them could be identified as core viruses, Guangzhou sobemo-like virus and Bafoussam mosquito solemovirus, were highly prevalent regionally in Ae. albopictus and Ae. africanus, respectively. This study highlights the diverse eukaryotic virome of Aedes species in southwestern Cameroon. Despite their shared genus, Aedes species exhibit limited viral sharing, with varying viral abundance and prevalence across locations. Ae. africanus, an understudied vector, harbors a rich and diverse virome, suggesting potential implications for arbovirus vector competence. Full article
(This article belongs to the Special Issue Virus Bioinformatics 2024)
Show Figures

Figure 1

20 pages, 2672 KiB  
Article
Construction and Characterization of a High-Capacity Replication-Competent Murine Cytomegalovirus Vector for Gene Delivery
by André Riedl, Denisa Bojková, Jiang Tan, Ábris Jeney, Pia-Katharina Larsen, Csaba Jeney, Florian Full, Ulrich Kalinke and Zsolt Ruzsics
Vaccines 2024, 12(7), 791; https://doi.org/10.3390/vaccines12070791 - 18 Jul 2024
Viewed by 408
Abstract
We investigated the basic characteristics of a new murine cytomegalovirus (MCMV) vector platform. Using BAC technology, we engineered replication-competent recombinant MCMVs with deletions of up to 26% of the wild-type genome. To this end, we targeted five gene blocks (m01-m17, m106-m109, m129-m141, m144-m158, [...] Read more.
We investigated the basic characteristics of a new murine cytomegalovirus (MCMV) vector platform. Using BAC technology, we engineered replication-competent recombinant MCMVs with deletions of up to 26% of the wild-type genome. To this end, we targeted five gene blocks (m01-m17, m106-m109, m129-m141, m144-m158, and m159-m170). BACs featuring deletions from 18% to 26% of the wild-type genome exhibited delayed virus reconstitution, while smaller deletions (up to 16%) demonstrated reconstitution kinetics similar to those of the wild type. Utilizing an innovative methodology, we introduced large genomic DNA segments, up to 35 kbp, along with reporter genes into a newly designed vector with a potential cloning capacity of 46 kbp (Q4). Surprisingly, the insertion of diverse foreign DNAs alleviated the delayed plaque formation phenotype of Q4, and these large inserts remained stable through serial in vitro passages. With reporter-gene-expressing recombinant MCMVs, we successfully transduced not only mouse cell lines but also non-rodent mammalian cells, including those of human, monkey, bovine, and bat origin. Remarkably, even non-mammalian cell lines derived from chickens exhibited successful transduction. Full article
(This article belongs to the Special Issue Viral Vector-Based Vaccines and Therapeutics)
Show Figures

Figure 1

12 pages, 2192 KiB  
Article
Incompetence of Vector Capacity of Rhipicephalus bursa to Transmit Babesia aktasi following Feeding on Clinically Infected Goat with High Level of Parasitemia
by Mehmet Can Ulucesme, Sezayi Ozubek and Munir Aktas
Vet. Sci. 2024, 11(7), 309; https://doi.org/10.3390/vetsci11070309 - 10 Jul 2024
Viewed by 407
Abstract
A recent molecular survey revealed a high prevalence of Babesia aktasi in indigenous goats from the Mediterranean region of Türkiye, coinciding with heavy Rhipicephalus bursa infestations. This geographical overlap has raised the possibility that R. bursa may serve as a vector for the parasite. To [...] Read more.
A recent molecular survey revealed a high prevalence of Babesia aktasi in indigenous goats from the Mediterranean region of Türkiye, coinciding with heavy Rhipicephalus bursa infestations. This geographical overlap has raised the possibility that R. bursa may serve as a vector for the parasite. To evaluate the potential of R. bursa to serve as a vector for the parasite, an experimental study was conducted in indigenous goats. An immune-suppressed donor goat was intravenously injected with 15 mL of the cryopreserved B. aktasi stabilate, resulting in severe clinical babesiosis and parasitemia. Subsequently, R. bursa larvae and adults derived from Babesia-free laboratory colonies were allowed to feed on the infected donor goat. After oviposition, engorged female carcasses, representative engorged nymphs, unfed larvae, and adult pools were used for DNA extraction and PCR analysis. No PCR positivity was detected in any of the DNA samples, except for those with engorged female carcasses and nymphs. Three immune-suppressed recipient goats were infested with the unfed immature and mature ticks consuming the blood of a donor infected with B. aktasi. No clinical or parasitological findings were encountered in the recipient for 40 days post-infestation. These findings indicated that R. bursa was not a competent vector for B. aktasi. Full article
(This article belongs to the Topic Ticks and Tick-Borne Pathogens)
Show Figures

Figure 1

12 pages, 728 KiB  
Review
A Literature Review on the Role of the Invasive Aedes albopictus in the Transmission of Avian Malaria Parasites
by Jesús Veiga, Mario Garrido, Marta Garrigós, Carolina R. F. Chagas and Josué Martínez-de la Puente
Animals 2024, 14(14), 2019; https://doi.org/10.3390/ani14142019 - 9 Jul 2024
Viewed by 465
Abstract
The Asian tiger mosquito (Aedes albopictus) is an invasive mosquito species with a global distribution. This species has populations established in most continents, being considered one of the 100 most dangerous invasive species. Invasions of mosquitoes such as Ae. albopictus could [...] Read more.
The Asian tiger mosquito (Aedes albopictus) is an invasive mosquito species with a global distribution. This species has populations established in most continents, being considered one of the 100 most dangerous invasive species. Invasions of mosquitoes such as Ae. albopictus could facilitate local transmission of pathogens, impacting the epidemiology of some mosquito-borne diseases. Aedes albopictus is a vector of several pathogens affecting humans, including viruses such as dengue virus, Zika virus and Chikungunya virus, as well as parasites such as Dirofilaria. However, information about its competence for the transmission of parasites affecting wildlife, such as avian malaria parasites, is limited. In this literature review, we aim to explore the current knowledge about the relationships between Ae. albopictus and avian Plasmodium to understand the role of this mosquito species in avian malaria transmission. The prevalence of avian Plasmodium in field-collected Ae. albopictus is generally low, although studies have been conducted in a small proportion of the affected countries. In addition, the competence of Ae. albopictus for the transmission of avian malaria parasites has been only proved for certain Plasmodium morphospecies under laboratory conditions. Therefore, Ae. albopictus may play a minor role in avian Plasmodium transmission in the wild, likely due to its mammal-biased blood-feeding pattern and its reduced competence for the development of different avian Plasmodium. However, further studies considering other avian Plasmodium species and lineages circulating under natural conditions should be carried out to properly assess the vectorial role of Ae. albopictus for the Plasmodium species naturally circulating in its distribution range. Full article
(This article belongs to the Special Issue Avian Haemosporidian Parasites: Causes and Consequences of Infection)
Show Figures

Figure 1

33 pages, 4187 KiB  
Review
Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India
by Nandhini Perumalsamy, Rohit Sharma, Muthukumaravel Subramanian and Shriram Ananganallur Nagarajan
Pathogens 2024, 13(7), 556; https://doi.org/10.3390/pathogens13070556 - 2 Jul 2024
Viewed by 748
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of [...] Read more.
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector’s range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick’s ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes. Full article
(This article belongs to the Section Ticks)
Show Figures

Graphical abstract

13 pages, 2833 KiB  
Article
Identification and Spatiotemporal Expression of a Putative New GABA Receptor Subunit in the Human Body Louse Pediculus humanus humanus
by Omar Hashim, Berthine Toubaté, Claude L. Charvet, Aimun A. E. Ahmed, Cédric Neveu, Isabelle Dimier-Poisson, Françoise Debierre-Grockiego and Catherine Dupuy
Genes 2024, 15(7), 844; https://doi.org/10.3390/genes15070844 - 27 Jun 2024
Viewed by 356
Abstract
The human louse (Pediculus humanus) is an obligatory blood feeding ectoparasite with two ecotypes: the human body louse (Pediculus humanus humanus), a competent vector of several bacterial pathogens, and the human head louse (Pediculus humanus capitis), responsible [...] Read more.
The human louse (Pediculus humanus) is an obligatory blood feeding ectoparasite with two ecotypes: the human body louse (Pediculus humanus humanus), a competent vector of several bacterial pathogens, and the human head louse (Pediculus humanus capitis), responsible for pediculosis and affecting millions of people around the globe. GABA (γ-aminobutyric acid) receptors, members of the cys-loop ligand gated ion channel superfamily, are among the main pharmacological targets for insecticides. In insects, there are four subunits of GABA receptors: resistant-to-dieldrin (RDL), glycin-like receptor of drosophila (GRD), ligand-gated chloride channel homologue3 (LCCH3), and 8916 are well described and form distinct phylogenetic clades revealing orthologous relationships. Our previous studies in the human body louse confirmed that subunits Phh-RDL, Phh-GRD, and Phh-LCCH3 are well clustered in their corresponding clades. In the present work, we cloned and characterized a putative new GABA receptor subunit in the human body louse that we named HoCas, for Homologous to Cys-loop α like subunit. Extending our analysis to arthropods, HoCas was found to be conserved and clustered in a new (fifth) phylogenetic clade. Interestingly, the gene encoding this subunit is ancestral and has been lost in some insect orders. Compared to the other studied GABA receptor subunits, HoCas exhibited a relatively higher expression level in all development stages and in different tissues of human body louse. These findings improved our understanding of the complex nature of GABA receptors in Pediculus humanus and more generally in arthropods. Full article
(This article belongs to the Special Issue Advances in Molecular Microbiology and Parasitology)
Show Figures

Figure 1

14 pages, 1497 KiB  
Review
Hemotrophic Mycoplasmas—Vector Transmission in Livestock
by Mareike Arendt, Julia Stadler, Mathias Ritzmann, Julia Ade, Katharina Hoelzle and Ludwig E. Hoelzle
Microorganisms 2024, 12(7), 1278; https://doi.org/10.3390/microorganisms12071278 - 23 Jun 2024
Viewed by 700
Abstract
Hemotrophic mycoplasmas (HMs) are highly host-adapted and specialized pathogens infecting a wide range of mammals including farm animals, i.e., pigs, cattle, sheep, and goats. Although HMs have been known for over 90 years, we still do not know much about the natural transmission [...] Read more.
Hemotrophic mycoplasmas (HMs) are highly host-adapted and specialized pathogens infecting a wide range of mammals including farm animals, i.e., pigs, cattle, sheep, and goats. Although HMs have been known for over 90 years, we still do not know much about the natural transmission routes within herds. Recently, it has been repeatedly discussed in publications that arthropod vectors may play a role in the transmission of HMs from animal to animal. This is mainly since several HM species could be detected in different potential arthropod vectors by PCR. This review summarizes the available literature about the transmission of bovine, porcine, ovine, and caprine HM species by different hematophagous arthropod vectors. Since most studies are only based on the detection of HMs in potential vectors, there are rare data about the actual vector competence of arthropods. Furthermore, there is a need for additional studies to investigate, whether there are biological vectors in which HMs can multiply and be delivered to new hosts. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

13 pages, 3923 KiB  
Article
Dengue Virus Serotype 1 Effects on Mosquito Survival Differ among Geographically Distinct Aedes aegypti Populations
by Milan S. G. Keirsebelik, Mariana R. David, Márcio Galvão Pavan, Dinair Couto-Lima, Miriam Palomino, Rafi Ur Rahman, Ary A. Hoffmann, Ana C. Bahia, Guy Caljon and Rafael Maciel-de-Freitas
Insects 2024, 15(6), 393; https://doi.org/10.3390/insects15060393 - 28 May 2024
Viewed by 813
Abstract
The mosquito Aedes aegypti is distributed worldwide and is recognized as the primary vector for dengue in numerous countries. To investigate whether the fitness cost of a single DENV-1 isolate varies among populations, we selected four Ae. aegypti populations from distinct localities: Australia [...] Read more.
The mosquito Aedes aegypti is distributed worldwide and is recognized as the primary vector for dengue in numerous countries. To investigate whether the fitness cost of a single DENV-1 isolate varies among populations, we selected four Ae. aegypti populations from distinct localities: Australia (AUS), Brazil (BRA), Pakistan (PAK), and Peru (PER). Utilizing simple methodologies, we concurrently assessed survival rates and fecundity. Overall, DENV-1 infection led to a significant decrease in mosquito survival rates, with the exception of the PER population. Furthermore, infected Ae. aegypti from PAK, the population with the lowest infection rate among those tested, exhibited a noteworthy reduction in egg laying. These findings collectively suggest that local mosquito-virus adaptations may influence dengue transmission in endemic settings. Full article
(This article belongs to the Special Issue Insect Vectors of Human and Zoonotic Diseases)
Show Figures

Figure 1

25 pages, 3906 KiB  
Article
Point Cloud Quality Assessment Using a One-Dimensional Model Based on the Convolutional Neural Network
by Abdelouahed Laazoufi, Mohammed El Hassouni and Hocine Cherifi
J. Imaging 2024, 10(6), 129; https://doi.org/10.3390/jimaging10060129 - 27 May 2024
Viewed by 677
Abstract
Recent advancements in 3D modeling have revolutionized various fields, including virtual reality, computer-aided diagnosis, and architectural design, emphasizing the importance of accurate quality assessment for 3D point clouds. As these models undergo operations such as simplification and compression, introducing distortions can significantly impact [...] Read more.
Recent advancements in 3D modeling have revolutionized various fields, including virtual reality, computer-aided diagnosis, and architectural design, emphasizing the importance of accurate quality assessment for 3D point clouds. As these models undergo operations such as simplification and compression, introducing distortions can significantly impact their visual quality. There is a growing need for reliable and efficient objective quality evaluation methods to address this challenge. In this context, this paper introduces a novel methodology to assess the quality of 3D point clouds using a deep learning-based no-reference (NR) method. First, it extracts geometric and perceptual attributes from distorted point clouds and represent them as a set of 1D vectors. Then, transfer learning is applied to obtain high-level features using a 1D convolutional neural network (1D CNN) adapted from 2D CNN models through weight conversion from ImageNet. Finally, quality scores are predicted through regression utilizing fully connected layers. The effectiveness of the proposed approach is evaluated across diverse datasets, including the Colored Point Cloud Quality Assessment Database (SJTU_PCQA), the Waterloo Point Cloud Assessment Database (WPC), and the Colored Point Cloud Quality Assessment Database featured at ICIP2020. The outcomes reveal superior performance compared to several competing methodologies, as evidenced by enhanced correlation with average opinion scores. Full article
Show Figures

Figure 1

12 pages, 2259 KiB  
Article
Strain-Dependent Assessment of Powassan Virus Transmission to Ixodes scapularis Ticks
by Rebekah J. McMinn, Emily N. Gallichotte, Samantha Courtney, Sam R. Telford and Gregory D. Ebel
Viruses 2024, 16(6), 830; https://doi.org/10.3390/v16060830 - 23 May 2024
Viewed by 696
Abstract
Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are [...] Read more.
Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are increasingly being reported. A better understanding of the transmission cycle between POWV and ticks is required in order to better predict and understand their public health burden. Recent phylogeographic analyses of POWV have identified geographical structuring, with well-defined northeastern and midwestern clades of the lineage II subtype. The extent that geographic and genetically defined sublineages differ in their ability to infect and be transmitted by blacklegged ticks is unclear. Accordingly, we determined whether there are strain-dependent differences in the transmission of POWV to ticks at multiple life stages. Five recent, low-passage POWV isolates were used to measure aspects of vector competence, using viremic and artificial infection methods. Infection rates in experimental ticks remained consistent between all five isolates tested, resulting in a 12–20% infection rate and some differences in viral load. We confirm that these differences are likely not due to differences in host viremia. Our results demonstrate that blacklegged ticks are susceptible to, and capable of transmitting, all tested strains and suggest that the tick–virus association is stable across diverse viral genotypes. Full article
(This article belongs to the Special Issue Tick-Borne Viruses: Transmission and Surveillance)
Show Figures

Figure 1

25 pages, 1876 KiB  
Article
Very Broadly Effective Hemagglutinin-Directed Influenza Vaccines with Anti-Herpetic Activity
by David C. Bloom, Cameron Lilly, William Canty, Nuria Vilaboa and Richard Voellmy
Vaccines 2024, 12(5), 537; https://doi.org/10.3390/vaccines12050537 - 14 May 2024
Cited by 1 | Viewed by 892
Abstract
A universal vaccine that generally prevents influenza virus infection and/or illness remains elusive. We have been exploring a novel approach to vaccination involving replication-competent controlled herpesviruses (RCCVs) that can be deliberately activated to replicate efficiently but only transiently in an administration site in [...] Read more.
A universal vaccine that generally prevents influenza virus infection and/or illness remains elusive. We have been exploring a novel approach to vaccination involving replication-competent controlled herpesviruses (RCCVs) that can be deliberately activated to replicate efficiently but only transiently in an administration site in the skin of a subject. The RCCVs are derived from a virulent wild-type herpesvirus strain that has been engineered to contain a heat shock promoter-based gene switch that controls the expression of, typically, two replication-essential viral genes. Additional safety against inadvertent replication is provided by an appropriate secondary mechanism. Our first-generation RCCVs can be activated at the administration site by a mild local heat treatment in the presence of an antiprogestin. Here, we report that epidermal vaccination with such RCCVs expressing a hemagglutinin or neuraminidase of an H1N1 influenza virus strain protected mice against lethal challenges by H1N1 virus strains representing 75 years of evolution. Moreover, immunization with an RCCV expressing a subtype H1 hemagglutinin afforded full protection against a lethal challenge by an H3N2 influenza strain, and an RCCV expressing a subtype H3 hemagglutinin protected against a lethal challenge by an H1N1 strain. Vaccinated animals continued to gain weight normally after the challenge. Protective effects were even observed in a lethal influenza B virus challenge. The RCCV-based vaccines induced robust titers of in-group, cross-group and even cross-type neutralizing antibodies. Passive immunization suggested that observed vaccine effects were at least partially antibody-mediated. In summary, RCCVs expressing a hemagglutinin induce robust and very broad cross-protective immunity against influenza. Full article
(This article belongs to the Special Issue The Recent Development of Influenza Vaccine)
Show Figures

Figure 1

18 pages, 5719 KiB  
Article
User-Friendly Replication-Competent MAdV-1 Vector System with a Cloning Capacity of 3.3 Kilobases
by Zhichao Zhang, Xiaojuan Guo, Wenzhe Hou, Xiaohui Zou, Yongjin Wang, Shuqing Liu and Zhuozhuang Lu
Viruses 2024, 16(5), 761; https://doi.org/10.3390/v16050761 - 11 May 2024
Viewed by 825
Abstract
Mouse adenoviruses (MAdV) play important roles in studying host–adenovirus interaction. However, easy-to-use reverse genetics systems are still lacking for MAdV. An infectious plasmid pKRMAV1 was constructed by ligating genomic DNA of wild-type MAdV-1 with a PCR product containing a plasmid backbone through Gibson [...] Read more.
Mouse adenoviruses (MAdV) play important roles in studying host–adenovirus interaction. However, easy-to-use reverse genetics systems are still lacking for MAdV. An infectious plasmid pKRMAV1 was constructed by ligating genomic DNA of wild-type MAdV-1 with a PCR product containing a plasmid backbone through Gibson assembly. A fragment was excised from pKRMAV1 by restriction digestion and used to generate intermediate plasmid pKMAV1-ER, which contained E3, fiber, E4, and E1 regions of MAdV-1. CMV promoter-controlled GFP expression cassette was inserted downstream of the pIX gene in pKMAV1-ER and then transferred to pKRMAV1 to generate adenoviral plasmid pKMAV1-IXCG. Replacement of transgene could be conveniently carried out between dual BstZ17I sites in pKMAV1-IXCG by restriction-assembly, and a series of adenoviral plasmids were generated. Recombinant viruses were rescued after transfecting linearized adenoviral plasmids to mouse NIH/3T3 cells. MAdV-1 viruses carrying GFP or firefly luciferase genes were characterized in gene transduction, plaque-forming, and replication in vitro or in vivo by observing the expression of reporter genes. The results indicated that replication-competent vectors presented relevant properties of wild-type MAdV-1 very well. By constructing viruses bearing exogenous fragments with increasing size, it was found that MAdV-1 could tolerate an insertion up to 3.3 kb. Collectively, a replication-competent MAdV-1 vector system was established, which simplified procedures for the change of transgene or modification of E1, fiber, E3, or E4 genes. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

18 pages, 6733 KiB  
Review
Winged Threat on the Offensive: A Literature Review Due to the First Identification of Aedes japonicus in Poland
by Marcin Gierek, Gabriela Ochała-Gierek, Andrzej Józef Woźnica, Grzegorz Zaleśny, Alicja Jarosz and Paweł Niemiec
Viruses 2024, 16(5), 703; https://doi.org/10.3390/v16050703 - 29 Apr 2024
Viewed by 3349
Abstract
Genetic studies preceded by the observation of an unknown mosquito species in Mikołów (Poland) confirmed that it belongs to a new invasive species in Polish fauna, Aedes japonicus (Theobald, 1901), a known vector for numerous infectious diseases. Ae. japonicus is expanding its geographical [...] Read more.
Genetic studies preceded by the observation of an unknown mosquito species in Mikołów (Poland) confirmed that it belongs to a new invasive species in Polish fauna, Aedes japonicus (Theobald, 1901), a known vector for numerous infectious diseases. Ae. japonicus is expanding its geographical presence, raising concerns about potential disease transmission given its vector competence for chikungunya virus, dengue virus, West Nile virus, and Zika virus. This first genetically confirmed identification of Ae. japonicus in Poland initiates a comprehensive review of the literature on Ae. japonicus, its biology and ecology, and the viral infections transmitted by this species. This paper also presents the circumstances of the observation of Ae. japonicus in Poland and a methodology for identifying this species. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 6933 KiB  
Article
Managing Super Pests: Interplay between Pathogens and Symbionts Informs Biocontrol of Whiteflies
by Weili Yan, Saixian Wang, Jialei Liu, Dan Zhai, Hang Lu, Jingjing Li, Rune Bai, Caiyan Lei, Luyang Song, Chenchen Zhao and Fengming Yan
Microorganisms 2024, 12(5), 887; https://doi.org/10.3390/microorganisms12050887 - 28 Apr 2024
Viewed by 833
Abstract
Bemisia tabaci is distributed globally and incurs considerable economic and ecological costs as an agricultural pest and viral vector. The entomopathogenic fungus Metarhizium anisopliae has been known for its insecticidal activity, but its impacts on whiteflies are understudied. We investigated how infection with [...] Read more.
Bemisia tabaci is distributed globally and incurs considerable economic and ecological costs as an agricultural pest and viral vector. The entomopathogenic fungus Metarhizium anisopliae has been known for its insecticidal activity, but its impacts on whiteflies are understudied. We investigated how infection with the semi-persistently transmitted Cucurbit chlorotic yellows virus (CCYV) affects whitefly susceptibility to M. anisopliae exposure. We discovered that viruliferous whiteflies exhibited increased mortality when fungus infection was present compared to non-viruliferous insects. High throughput 16S rRNA sequencing also revealed significant alterations of the whitefly bacterial microbiome diversity and structure due to both CCYV and fungal presence. Specifically, the obligate symbiont Portiera decreased in relative abundance in viruliferous whiteflies exposed to M. anisopliae. Facultative Hamiltonella and Rickettsia symbionts exhibited variability across groups but dominated in fungus-treated non-viruliferous whiteflies. Our results illuminate triangular interplay between pest insects, their pathogens, and symbionts—dynamics which can inform integrated management strategies leveraging biopesticides This work underscores the promise of M. anisopliae for sustainable whitefly control while laying the groundwork for elucidating mechanisms behind microbe-mediated shifts in vector competence. Full article
(This article belongs to the Special Issue Plant Pathogens: Monitoring, Identification and Biological Control)
Show Figures

Figure 1

16 pages, 2504 KiB  
Article
Expanding the Scope of Adenoviral Vectors by Utilizing Novel Tools for Recombination and Vector Rescue
by Julian Fischer, Ariana Fedotova, Clara Bühler, Laura Darriba, Sabrina Schreiner and Zsolt Ruzsics
Viruses 2024, 16(5), 658; https://doi.org/10.3390/v16050658 - 23 Apr 2024
Viewed by 728
Abstract
Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, [...] Read more.
Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, the merits of translating these natural benefits into vector applications are apparent. This translation, however, proves difficult, since while research has investigated the application of these viruses, there are no universally applicable rules in vector design for non-classical adenovirus types. In this paper, we describe a generalized workflow that allows vectorization, rescue, and cloning of all adenoviral species to enable the rapid development of new vector variants. We show this using human and simian adenoviruses, further modifying a selection of them to investigate their gene transfer potential and build potential vector candidates for future applications. Full article
(This article belongs to the Special Issue 15th International Adenovirus Meeting)
Show Figures

Figure 1

Back to TopTop