Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,981)

Search Parameters:
Keywords = wastewater treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1181 KiB  
Article
Changes in the Buffer Properties of the Restored Lake Complex
by Jolanta Katarzyna Grochowska, Anna Maria Goździejewska and Renata Augustyniak-Tunowska
Sustainability 2024, 16(18), 7990; https://doi.org/10.3390/su16187990 - 12 Sep 2024
Abstract
The objects of this study were lakes Mielenko (LM) (7.8 ha, 1.9 m), Klasztorne Małe (LKM) (13.7 ha, 20.0 m), and Klasztorne Duże (LKD) (57.5 ha, 8.5 m), located in north Poland (Kashubian Lake District). These lakes received raw sanitary and storm wastewater, [...] Read more.
The objects of this study were lakes Mielenko (LM) (7.8 ha, 1.9 m), Klasztorne Małe (LKM) (13.7 ha, 20.0 m), and Klasztorne Duże (LKD) (57.5 ha, 8.5 m), located in north Poland (Kashubian Lake District). These lakes received raw sanitary and storm wastewater, leading to extreme degradation of these water bodies. This study aimed to present changes in buffer indicators such as reaction, alkalinity, total hardness, and Ca and Mg content that occurred as an effect of their restoration using the sequential application of coagulants as an innovative approach to the phosphorus inactivation method. Sustainable phosphorus inactivation in the study lakes made it possible to achieve nutrient concentrations in the range of values typical for low-trophic lakes. A radical decrease in P concentration in the water resulted in a limitation of production processes. Moreover, after a, it was noticed that the water parameters determining its buffering properties did not show a clear vertical stratification with increasing values toward the bottom. For example, before restoration, the mean e value of alkalinity in LM fluctuated around 2.10 mval/L, and after restoration activities, the average value was 1.97 mval/L. In LKM, the mean alkalinity value in surface water layers was 2.53 mval/L, and in bottom water layers, it was 4.92 mval/L; after restoration treatments, the average alkalinity of surface water was 2.18 mval/L, and in bottom water, it was 2.99 mval/L. In the last LKD, under the influence of the applied restoration, the average alkalinity of surface waters changed from 2.21 to 2.07 mval/L, and in bottom water, it changed from 2.86 to 2.12 mval/L. The values of parameters determining the buffering properties of lake water after restoration activities allow their water to be classified as slightly or medium hard. The changes obtained can be considered beneficial because water that is too hard does not support the development of aquatic organisms, and the values obtained in the study lakes after sustainable restoration are optimal for the construction of plant walls, shells, and fish bones. Full article
12 pages, 1598 KiB  
Article
An Analysis of the Physicochemical and Energy Parameters of Briquettes Manufactured from Sewage Sludge Mixtures and Selected Organic Additives
by Sebastian Kujawiak, Małgorzata Makowska, Damian Janczak, Wojciech Czekała, Włodzimierz Krzesiński, Ariel Antonowicz and Karol Kupryaniuk
Energies 2024, 17(18), 4573; https://doi.org/10.3390/en17184573 - 12 Sep 2024
Abstract
As a by-product of wastewater treatment, sewage sludge can be used for natural, agricultural, or energy purposes. One method of preparing sludge for management and use is solar drying. To intensify the drying process, natural additives can be used to alter the structure [...] Read more.
As a by-product of wastewater treatment, sewage sludge can be used for natural, agricultural, or energy purposes. One method of preparing sludge for management and use is solar drying. To intensify the drying process, natural additives can be used to alter the structure of the sludge and accelerate the evaporation of water. This research aimed to evaluate the influences of different organic additives in sewage sludge mixtures on the physicochemical and energy parameters of briquettes. This research was carried out without thermal boosting in a 4 × 2.5 × 2 m plastic tunnel. The tunnel was equipped with three drying stations and control and measuring equipment. In two test series, sludge additives in the form of straw and lignocellulosic materials, sawdust, bark, woodchips, and walnut shells, were used. Briquettes were made from the resulting mixtures and then subjected to physical and chemical analyses. This research showed high variability in the contents of trace elements, nitrogen, and sulphur in relation to an increase in the amount of sludge in the briquettes, which, for the briquettes made from sewage sludge, was nearly twice as high as for the briquettes made from the mixtures. The results of the flue gas analysis for the briquettes with sawdust and wood chip additives were very similar. The briquettes made from sewage sludge with lignocellulosic materials (bark and wood chips) had fuel properties similar to woody biomass, with a calorific value and heat of combustion of 15–16 MJ/kg. Fibrous additives (straw) significantly increased the strength parameters of the briquettes, by more than 50% of the value. The compositions and properties of the mixtures affected the following briquetting parameters: temperature and compressive force. The briquettes made from sewage sludge and additives can be classified according to ISO 21640 as SRFs (solid recovered fuels). In most of the results, the net calorific value (NCV) was 3 to 4; the chlorine content (CL) was 2 to 1; and the mercury content (Hg) was 1. The sewage sludge mixtures facilitated the agricultural and energy use of the briquettes. Full article
(This article belongs to the Special Issue Biofuel Production and Bio-Waste Management)
Show Figures

Figure 1

14 pages, 3407 KiB  
Article
Synergistic Enhancement of Oxytetracycline Hydrochloride Removal by UV/ZIF-67 (Co)-Activated Peroxymonosulfate
by Yiting Luo, Zhao Liu, Mingqiang Ye, Yihui Zhou, Rongkui Su, Shunhong Huang, Yonghua Chen and Xiangrong Dai
Water 2024, 16(18), 2586; https://doi.org/10.3390/w16182586 - 12 Sep 2024
Abstract
This study developed a new system for removing antibiotics using UV/ZIF-67 (Co)-activated peroxymonosulfate. The presence of antibiotic organic pollutants in urban sewage presents a substantial challenge for sewage treatment technologies. Due to the persistent chemical stability of antibiotics, their low environmental concentrations, and [...] Read more.
This study developed a new system for removing antibiotics using UV/ZIF-67 (Co)-activated peroxymonosulfate. The presence of antibiotic organic pollutants in urban sewage presents a substantial challenge for sewage treatment technologies. Due to the persistent chemical stability of antibiotics, their low environmental concentrations, and their resistance to degradation, effectively removing residual antibiotics remains a significant issue in urban wastewater treatment. This study introduces an eco-friendly photocatalytic technology designed to enhance the removal of oxytetracycline (OTC) from municipal wastewater using a UV/ZIF-67 (Co)/PMS system. The results showed that compared with UV, UV/PMS, ZIF-67 (Co), ZIF-67 (Co)/PMS, and UV/ZIF-67 (Co) systems, the UV/ZIF-67 (Co)/PMS system had the highest OTC removal rate. When 10 mg ZIF-67 (Co) and 1 mM PMS were applied to 100 mL 30 mg/L OTC solution, the degradation efficiency reached 87.73% under 400 W ultraviolet light. Increasing the dosage of ZIF-67 (Co) and PMS can improve the removal rate of OTC, but the marginal benefit of additional dosage is reduced. The highest degradation efficiency was observed at weakly acidic pH, which may be due to potential damage to the internal structure of the catalyst and reduced performance under extreme pH conditions. The influence of chloride ions and nitrate ions on the reaction system is minimal, while bicarbonate ions exhibit a significant inhibitory effect on the removal of OTC. The UV/ZIF-67 (Co)/PMS system exhibits adaptability to various water sources, including tap water, Guitang River water, and pure water. The results of free radical identification indicate the presence of hydroxyl and sulfate groups in the UV/ZIF-67 (Co)/PMS system, both of which play important roles in the degradation of OTC. This study offers valuable insights and technical support for the green, efficient, and environmentally friendly removal of antibiotics from urban wastewater. Full article
(This article belongs to the Special Issue Water Pollution Monitoring, Modelling and Management)
Show Figures

Figure 1

27 pages, 15488 KiB  
Review
Gels for Water Remediation: Current Research and Perspectives
by Gabriela Buema, Adina-Elena Segneanu, Dumitru-Daniel Herea and Ioan Grozescu
Gels 2024, 10(9), 585; https://doi.org/10.3390/gels10090585 - 12 Sep 2024
Abstract
The development of cost-effective and high-performance technologies for wastewater treatment is essential for achieving a sustainable economy. Among the various methods available for water remediation, adsorption is widely recognized as an effective and straightforward approach for removing a range of pollutants. Gel materials, [...] Read more.
The development of cost-effective and high-performance technologies for wastewater treatment is essential for achieving a sustainable economy. Among the various methods available for water remediation, adsorption is widely recognized as an effective and straightforward approach for removing a range of pollutants. Gel materials, particularly hydrogels and aerogels, have attracted significant research interest due to their unique properties. Hydrogels, for instance, are noted for their ability to be regenerated and reused, ease of separation and handling, and suitability for large-scale applications. Additionally, their low cost, high water absorption capacity, and contribution to environmental protection are important advantages. Aerogels, on the other hand, are distinguished by their low thermal conductivity, transparency, flexibility, high porosity, mechanical strength, light weight, large surface area, and ultralow dielectric constant. This review provides a comprehensive analysis of the current literature, highlighting gaps in knowledge regarding the classification, preparation, characterization, and key properties of these materials. The potential application of hydrogels and aerogels in water remediation, particularly in removing contaminants such as dyes, heavy metals, and various organic and inorganic pollutants, is also discussed. Full article
Show Figures

Figure 1

17 pages, 2402 KiB  
Article
Occurrence of Uncultured Legionella spp. in Treated Wastewater Effluent and Its Impact on Human Health (SCA.Re.S Project)
by Osvalda De Giglio, Giusy Diella, Francesco Bagordo, Antonella Francesca Savino, Angelantonio Calabrese, Mariavirginia Campanale, Francesco Triggiano, Francesca Apollonio, Valentina Spagnuolo, Marco Lopuzzo, Tiziana Grassi, Maria Clementina Caputo, Silvia Brigida, Federica Valeriani, Vincenzo Romano Spica and Maria Teresa Montagna
Pathogens 2024, 13(9), 786; https://doi.org/10.3390/pathogens13090786 - 12 Sep 2024
Abstract
Wastewater treatment plants (WWTPs) provide optimal conditions for the environmental spread of Legionella. As part of the Evaluation of Sanitary Risk Related to the Discharge of Wastewater to the Ground (SCA.Re.S) project, this study was conducted to evaluate the presence of Legionella [...] Read more.
Wastewater treatment plants (WWTPs) provide optimal conditions for the environmental spread of Legionella. As part of the Evaluation of Sanitary Risk Related to the Discharge of Wastewater to the Ground (SCA.Re.S) project, this study was conducted to evaluate the presence of Legionella in WWTP effluent and in groundwater samples collected from two wells located downstream from the plant. The samples were analyzed to determine the concentrations of Legionella spp using the standard culture-based method and molecular techniques, followed by genomic sequencing analysis. Legionella was detected only with the molecular methods (except in one sample of effluent positive for L. pneumophila serogroup 6), which showed viable Legionella pneumophila and L. non-pneumophila through the use of free DNA removal solution in both the effluent and groundwater, with concentrations that progressively decreased downstream from the plant. Viable L. pneumophila appeared to be slightly more concentrated in warm months. However, no significant differences (p ≥ 0.05) in concentrations between cold and warm months were observed. A genotypic analysis characterized the species present in the samples and found that uncultured Legionella spp, as yet undefined, constituted the prevalent species in all the samples (range 77.15–83.17%). WWTPs play an important role in the hygienic and sanitary quality of groundwater for different uses. The application of Legionella control systems during the purification of effluents is warranted to prevent possible outbreaks of legionellosis. Full article
(This article belongs to the Special Issue Legionella and Waterborne Disease)
Show Figures

Figure 1

17 pages, 3385 KiB  
Article
Effect of a Phytochemical-Rich Olive-Derived Extract on Anthropometric, Hematological, and Metabolic Parameters
by Anna Aiello, Luana Calabrone, Douglas M. Noonan, Paola Corradino, Sara Nofri, Simone Cristoni, Giulia Accardi, Giuseppina Candore, Calogero Caruso, Angelo Zinellu and Adriana Albini
Nutrients 2024, 16(18), 3068; https://doi.org/10.3390/nu16183068 - 11 Sep 2024
Viewed by 272
Abstract
Background: Extra virgin olive oil is a fundamental component of the Mediterranean diet. It contains several molecules that sustain human well-being by modulating cellular metabolism and exerting antioxidant, anti-inflammatory, and anti-ageing effects to protect normal tissues, and it can exert anti-angiogenic and pro-apoptotic [...] Read more.
Background: Extra virgin olive oil is a fundamental component of the Mediterranean diet. It contains several molecules that sustain human well-being by modulating cellular metabolism and exerting antioxidant, anti-inflammatory, and anti-ageing effects to protect normal tissues, and it can exert anti-angiogenic and pro-apoptotic effects on cancer cells. Metabolites found in different parts of the olive tree, including leaves, also possess properties that might help in cancer prevention and promote wellness in aging. Olive mill wastewater (OMWW), a liquid residue produced during olive oil extraction, represents an environmental issue. However, it is rich in phytochemicals with potential beneficial properties. Dietary supplements based on OMWW can be produced for nutritional supplementation with advantages to the ecology. Purpose: This work aims to measure hematochemical, anthropometric, and metabolomic parameters in volunteers taking an OMWW dietary supplement, Oliphenolia® (OMWW-OL). Methods: The supplementation of OMWW-OL 25 mL twice daily for 30 days was tested on a pilot cohort of volunteers with characteristics close to metabolic syndrome. Hematochemical, anthropometric, serum biomarkers and serum metabolomic parameters were analyzed before the intervention, at 30 days, and 30 days after stopping consumption. Results: A total of 29 volunteers were enrolled, and 23 completed the study. The participants’ parameters at baseline were measured, and then twice daily at 30 days of treatment and 30 days after assumption discontinuation. Although treatment was with an olive derivative, their weight did not increase. Their body mass index, instead of augmenting, slightly decreased, particularly in the women. Also, hydration increased, especially in the women, while blood pressure, glycemia, and insulin decreased. Cholesterol, high-density lipoproteins, and triglycerides were stable, and LDL levels decreased, while vitamin D levels, alongside calcium, perceptibly increased. Albumin also increased. All the values were in support of an equilibrium, with no damaging effects. By mass spectrometry analysis, we also found favorable changes in the vitamin D/histamine and homocysteine/methionine ratios, an increase in a new metabolite of unknown formula, and the vitamin D/unknown metabolite ratio. Conclusions: Supplementation of OMWW-OL has no detrimental effects and might imply the beneficial modulation of several biological parameters. Although this is a small pilot study, with limited potency, it preliminarily suggests that the OMWW extract use could be potentially valuable for people at risk of metabolic syndrome. Some of these parameters could also be relevant in supporting healthy ageing and in cancer prevention. Full article
(This article belongs to the Special Issue Effects of Phytochemicals on Metabolic Disorders and Human Health)
Show Figures

Figure 1

28 pages, 4703 KiB  
Article
Modeling the Impact of Urban and Industrial Pollution on the Quality of Surface Water in Intermittent Rivers in a Semi-Arid Mediterranean Climate
by Abdelillah Bouriqi, Naaila Ouazzani and Jean-François Deliege
Hydrology 2024, 11(9), 150; https://doi.org/10.3390/hydrology11090150 - 11 Sep 2024
Viewed by 236
Abstract
Ensuring the protection of the aquatic environment and addressing the water scarcity and degradation of water quality in the Mediterranean region pose significant challenges. This study specifically aims to assess the impact of urban and industrial pollution on the ZAT River water quality. [...] Read more.
Ensuring the protection of the aquatic environment and addressing the water scarcity and degradation of water quality in the Mediterranean region pose significant challenges. This study specifically aims to assess the impact of urban and industrial pollution on the ZAT River water quality. The study exploits a combination of field measurements and mathematical simulations using the PEGASE model. The objective is to evaluate how water quality changes throughout the different seasons and to determine whether olive oil factories discharge industrial wastewater into the river. The study reveals that the river water quality remains relatively stable along its course, up to km 64 in winter and km 71.77 in summer, where poor water quality is recorded. This degradation can be attributed to multiple factors. One of these factors is the discharge of industrial wastewater, which accounts for 47% of the COD pollution load. This industrial wastewater is released into the river without treatment during the production period (January–February) and inactivity period (March–May). The combined impact of urban and industrial wastewater is also associated with the decrease in water flow resulting from water withdrawals due to irrigation canals and groundwater recharge, which both contribute to the observed changes in river water quality. Importantly, field measurements combined with results obtained from the calibrated model provide compelling evidence of unauthorized wastewater discharges from the olive oil factories into the river. These results emphasize the need for stricter regulation, such as developing water quality monitoring strategies based on the use of modeling methodologies. They also emphasize the importance of improving wastewater management practices, such as setting up treatment plants for different sources of pollution or developing a co-treatment plant to mitigate the adverse impact of industrial pollution on river water quality. Full article
Show Figures

Figure 1

30 pages, 6574 KiB  
Article
An Environmentally Sustainable Approach for Raw Whey Treatment through Sequential Cultivation of Macrophytes and Microalgae
by Marco Alberto Mamani Condori, Karen Adriana Montesinos Pachapuma, Maria Pia Gomez Chana, Olenka Quispe Huillca, Nemesio Edgar Veliz Llayqui, Lorenzo López-Rosales and Francisco García-Camacho
Appl. Sci. 2024, 14(18), 8139; https://doi.org/10.3390/app14188139 - 10 Sep 2024
Viewed by 513
Abstract
The cheese industry produces substantial amounts of raw cheese whey wastewater (RW), which requires effective treatment prior to environmental disposal. This study presents an innovative sequential batch system that combines macrophyte and microalgal cultivation for RW remediation. The efficacy of Lemna minor MO23 [...] Read more.
The cheese industry produces substantial amounts of raw cheese whey wastewater (RW), which requires effective treatment prior to environmental disposal. This study presents an innovative sequential batch system that combines macrophyte and microalgal cultivation for RW remediation. The efficacy of Lemna minor MO23 in first-line photobioreactors (PBR-1) and Chlorella sp. MC18 (CH) or Scenedesmus sp. MJ23-R (SC) in second-line photobioreactors (PBR-2) for pollutant removal was evaluated. The nutrient removal capacity of L. minor, CH, and SC was assessed at optimal tolerance concentrations, alongside nutrient recovery from treated RW (TRW) by PBR-1 for microalgae biomass production. The results demonstrate that all three species effectively purified the cheese whey wastewater. L. minor efficiently removed COD, nitrate, phosphate, and sulfate from RW, producing TRW effluent suitable for microalgal growth. CH and SC further purified TRW, enhancing biomass production. CH outperformed SC with a 4.79% higher maximum specific growth rate and 20.95% higher biomass yield. Biochemical analyses revealed the potential of CH and SC biomass for applications such as biofuels and aquaculture. After treatment, the physicochemical parameters of the effluent were within the regulatory limits. This demonstrates that the PBR-1 and PBR-2 series-coupled system effectively purifies and recovers dairy effluents while complying with discharge standards. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

18 pages, 7995 KiB  
Article
Oily Wastewater Treatment by Using Fe3O4/Bentonite in Fixed-Bed Adsorption Column
by Mohammed A. Sarran, Adnan A. AbdulRazak, Mohammed F. Abid, Alaa Dhari Jawad Al-Bayati, Khalid T. Rashid, Mohammed Ahmed Shehab, Haidar Hasan Mohammed, Saad Alsarayefi, Mahmood Alhafadhi and Mohammed Alktranee
ChemEngineering 2024, 8(5), 92; https://doi.org/10.3390/chemengineering8050092 - 10 Sep 2024
Viewed by 250
Abstract
Oily wastewater is a major environmental issue resulting from different industrial and manufacturing activities. Contaminated water with oil represents a significant environmental hazard that can harm numerous life forms. Several methodologies have been tested for the removal of oily wastewater from aqueous solutions, [...] Read more.
Oily wastewater is a major environmental issue resulting from different industrial and manufacturing activities. Contaminated water with oil represents a significant environmental hazard that can harm numerous life forms. Several methodologies have been tested for the removal of oily wastewater from aqueous solutions, and adsorption in a flow-through reactor is an effective mechanism to reduce these effluents. This study focuses on evaluating the ability of Fe3O4/Bent material to adsorb gasoline emulsion from a solution using a fixed-bed column, and it involves analyzing the resulting breakthrough curves. The FT-IR, SEM, EDX, and XRD techniques were used to characterize Fe3O4/Bent. Various ranges of variables were examined, including bed height (2–4 cm), flow rate (3–3.8 mL/min), and initial concentration (200–1000 mg/L), to determine their impacts on the mass transfer zone (MTZ) length and the adsorption capacity (qe). It was shown that a higher bed height and a lower flow rate contributed to a longer time of breakthrough and exhaustion. At the same time, it was noted that under high initial gasoline concentrations, the fixed-bed system rapidly reached breakthrough and exhaustion. Models like the Yoon–Nelson and Thomas kinetic column models were employed to predict the breakthrough curves. Thomas and Yoon–Nelson’s breakthrough models provided a good fit for the breakthrough curves with a correlation coefficient of R2 > 0.95. Furthermore, with a fixed-bed system, the Thomas and Yoon–Nelson models best describe the breakthrough curves for gasoline removal. Full article
Show Figures

Figure 1

20 pages, 10304 KiB  
Article
Chemical and Physical Characterization of Three Oxidic Lithological Materials for Water Treatment
by José G. Prato, Fernando Millán, Marin Senila, Erika Andrea Levei, Claudiu Tănăselia, Luisa Carolina González, Anita Cecilia Ríos, Luis Sagñay Yasaca and Guillermo Eduardo Dávalos
Sustainability 2024, 16(18), 7902; https://doi.org/10.3390/su16187902 - 10 Sep 2024
Viewed by 343
Abstract
Water treatment necessitates the sustainable use of natural resources. This paper focuses on the characterization of three oxidic lithological materials (OLMs) with the aim of utilizing them to prepare calcined adsorbent substrates for ionic adsorption. The three materials have pH levels of [...] Read more.
Water treatment necessitates the sustainable use of natural resources. This paper focuses on the characterization of three oxidic lithological materials (OLMs) with the aim of utilizing them to prepare calcined adsorbent substrates for ionic adsorption. The three materials have pH levels of 7.66, 4.63, and 6.57, respectively, and organic matter contents less than 0.5%. All of the materials are sandy loam or loamy sand. Their electric conductivities (0.18, 0.07, and 0.23 dS/m) show low levels of salinity and solubility. Their CEC (13.40, 13.77, and 6.76 cmol(+)kg) values are low, similar to those of amphoteric oxides and kaolin clays. Their aluminum contents range from 7% up to 12%, their iron contents range from 3% up to 7%, their titanium contents range from 0.3% to 0.63%, and their manganese contents range from 0.007% up to 0.033%. The amphoteric oxides of these metals are responsible for their ionic adsorption reactions due to their variable charge surfaces. Their zirconium concentrations range from 100 to 600 mg/g, giving these materials the refractory properties necessary for the preparation of calcined adsorbent substrates. Our XRD analysis shows they share a common mineralogical composition, with quartz as the principal component, as well as albite, which leads to their thermal properties and mechanical resistance against abrasion. The TDA and IR spectra show the presence of kaolinite, which is lost during thermal treatments. The results show that the OLMs might have potential as raw materials to prepare calcined adsorbent substrates for further applications and as granular media in the sustainable treatment of both natural water and wastewater. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

22 pages, 6216 KiB  
Article
Synthesis and Dye Adsorption Dynamics of Chitosan–Polyvinylpolypyrrolidone (PVPP) Composite
by Hilda Dinah Kyomuhimbo, Wandile McHunu, Marco Arnold, Usisipho Feleni, Nils H. Haneklaus and Hendrik Gideon Brink
Polymers 2024, 16(18), 2555; https://doi.org/10.3390/polym16182555 - 10 Sep 2024
Viewed by 407
Abstract
One major environmental issue responsible for water pollution is the presence of dyes in the aquatic environment as a result of human activity, particularly the textile industry. Chitosan–Polyvinylpolypyrrolidone (PVPP) polymer composite beads were synthesized and explored for the adsorption of dyes (Bismarck brown [...] Read more.
One major environmental issue responsible for water pollution is the presence of dyes in the aquatic environment as a result of human activity, particularly the textile industry. Chitosan–Polyvinylpolypyrrolidone (PVPP) polymer composite beads were synthesized and explored for the adsorption of dyes (Bismarck brown (BB), orange G (OG), brilliant blue G (BBG), and indigo carmine (IC)) from dye solution. The CS-PVPP beads demonstrated high removal efficiency of BB (87%), OG (58%), BBG (42%), and IC (49%). The beads demonstrated a reasonable surface area of 2.203 m2/g and were negatively charged in the applicable operating pH ranges. TGA analysis showed that the polymer composite can withstand decomposition up to 400 °C, proving high stability in harsh conditions. FTIR analysis highlighted the presence of N-H amine, O-H alcohol, and S=O sulfo groups responsible for electrostatic interaction and hydrogen bonding with the dye molecules. A shift in the FTIR bands was observed on N-H and C-N stretching for the beads after dye adsorption, implying that adsorption was facilitated by hydrogen bonding and Van der Waals forces of attraction between the hydroxyl, amine, and carbonyl groups on the surface of the beads and the dye molecules. An increase in pH increased the adsorption capacity of the beads for BB while decreasing OG, BBG, and IC due to their cationic and anionic nature, respectively. While an increase in temperature did not affect the adsorption capacity of OG and BBG, it significantly improved the removal of BB and IC from the dye solution and the adsorption was thermodynamically favoured, as demonstrated by the negative Gibbs free energy at all temperatures. Adsorption of dye mixtures followed the characteristic adsorption nature of the individual dyes. The beads show great potential for applications in the treatment of dye wastewater. Full article
(This article belongs to the Special Issue Advanced Polymers for Wastewater Treatment and Toxicant Removal)
Show Figures

Figure 1

20 pages, 4378 KiB  
Article
Effective Detoxification of Olive Mill Wastewater Using Multi-Step Surfactant-Based Treatment: Assessment of Environmental and Health Impact
by Yazan Akkam, Mohammad Zaitoun, Islam Aljarrah, Aiman Jaradat, Ali Hmedat, Hassan Alhmoud, Taha Rababah, Ali Almajwal and Numan Al-Rayyan
Molecules 2024, 29(18), 4284; https://doi.org/10.3390/molecules29184284 - 10 Sep 2024
Viewed by 306
Abstract
Olive mill wastewater (OMW) poses a significant environmental challenge and health concern in olive-producing countries, including Jordan. Surfactant micelles are frequently employed as solubilizing agents to enhance the water solubility of chemical compounds. This study aims to leverage the sodium dodecyl sulfate (SDS) [...] Read more.
Olive mill wastewater (OMW) poses a significant environmental challenge and health concern in olive-producing countries, including Jordan. Surfactant micelles are frequently employed as solubilizing agents to enhance the water solubility of chemical compounds. This study aims to leverage the sodium dodecyl sulfate (SDS) micelles in a multi-step process to detoxify OMW for agricultural and industrial uses and reduce its impact. The OMW was treated in multiple steps: screening, coagulation with different chemicals, and distillation with different surfactants. The treatment steps were monitored using LC–MS, GC–MS, ICP–MS, chemical oxygen demand contents, and total phenolic compounds. The detoxification of OMW was evaluated using standard germination assays, MTT assays using tissue culture, and toxicity assays using fluorescence bacteria. Following the treatment, the seed growth rate improved significantly from 0% to 100%. The GC–MS revealed a substantial decrease in pollutants. The concentration of polyphenols was reduced to 2.5%, while the COD level decreased to 35%. The toxicity in bacteria was significantly reduced in a time-dependent manner, and the toxicity in human cells decreased by 95%. Additionally, between 50% and 95% of metals in OMW were removed. The multi-step SDS-based approach successfully detoxified the OMW and enhanced water quality, which would pave the road for its direct application in industry and agriculture. Full article
(This article belongs to the Special Issue Adsorbents in Treatment of Pollutants)
Show Figures

Figure 1

17 pages, 8267 KiB  
Article
Performance Evaluation of a Romanian Zeolite: A Sustainable Material for Removing Ammonium Ions from Water
by Thaaer Hameed Abed, Daniela Simina Stefan, Daniela Cristina Berger, Nicolaie Cicerone Marinescu and Mircea Stefan
Sustainability 2024, 16(18), 7888; https://doi.org/10.3390/su16187888 - 10 Sep 2024
Viewed by 272
Abstract
Ammonium ion is a chemical species that is found in abundance in natural waters, whether underground or surface, but also in wastewater resulting from agricultural and industrial activities. Even if the removal of the ammonium ion from water has been studied for a [...] Read more.
Ammonium ion is a chemical species that is found in abundance in natural waters, whether underground or surface, but also in wastewater resulting from agricultural and industrial activities. Even if the removal of the ammonium ion from water has been studied for a very long time, it has been found that its removal is far from being solved. In this study, we evaluated the performance of the ammonium ion adsorption process on two adsorbents, zeolite clinoptilolite, ZR, a sustainable material (manufacturer: Zeolite Development SRL, Rupea, Brasov, Romania), and the other granular activated carbon type, Norit GAC 830 W. Zeolite ZR is found in very large deposits in Romania; it is a natural, cheap material with costs between 50 and 100 EUR/ton, compared to other adsorbents that cost over 500 EUR/ton and which can be regenerated and reused in the technological process of water treatment and purification, but also after exhaustion, as an amendment for the soil. In the first step, this paper presents the mineralogic (XRD) and structural (SEM and EDX) characterization of the ZR and the determination of the pH zero-point charge, pHZPC, for all the adsorbents. Studies were carried out in equilibrium and kinetic conditions. The efficiency of the adsorbent was investigated in different experimental conditions by varying the initial concentration, particle size, temperature, pH, ionic strength, and contact time. The mathematical models and parameters specific to the adsorption isotherms that best describe the experimental results were identified. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich mathematical models were used for comparison. The Langmuir isotherm proved to be the most appropriate to describe the adsorption of ammonium ions on all types of adsorbents used. The adsorption capacity of ammonium ions from synthetic solutions at 20 °C, pH = 6.09, for the range of initial concentrations 0–50 mg/L for Rupea zeolite is in the range of 10.46 mg/g−12.34 mg/g, and for granular activated carbon GAC W830, it is 16.64 mg/g. It was found that the adsorption capacity of the ammonium ion on both activated carbon and zeolite increases with increasing temperature and pH. Also, it was observed that as the ionic strength increases, the adsorption capacity decreases for all four adsorbents. Kinetic models were also identified that best describe the experimental processes. In this sense, pseudo-first order, pseudo-second order, intra-particle diffusion and the Elovich model were used. The results of the investigation showed that second-order kinetics governs the adsorption process on ZR, and pseudo-first order governs activated carbon. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

25 pages, 4459 KiB  
Review
Microalgal–Bacteria Biofilm in Wastewater Treatment: Advantages, Principles, and Establishment
by Shiling Xu, Zimu Li, Sheng Yu, Zhipeng Chen, Jiajie Xu, Shuang Qiu and Shijian Ge
Water 2024, 16(18), 2561; https://doi.org/10.3390/w16182561 - 10 Sep 2024
Viewed by 417
Abstract
The attached microalgal–bacterial consortium (microalgae–bacteria biofilm, MBBF) has been increasingly recognized in wastewater treatment for its superior pollutant removal efficiency, resilience to toxic substances, and improved harvesting performance. This review initially discusses the advantages of MBBFs compared to activated sludge and suspended microalgal–bacterial [...] Read more.
The attached microalgal–bacterial consortium (microalgae–bacteria biofilm, MBBF) has been increasingly recognized in wastewater treatment for its superior pollutant removal efficiency, resilience to toxic substances, and improved harvesting performance. This review initially discusses the advantages of MBBFs compared to activated sludge and suspended microalgal–bacterial consortia. These advantages stem from the coexistence of pollutant removal pathways for the bacteria and microalgae in MBBFs, as well as the synergistic interactions between the microalgae and bacteria that enhance pollutant removal and resilience capabilities. Subsequently, the establishment of the MBBF system is emphasized, covering the establishment process, influencing factors of MBBF formation, and the utilization of photobioreactors. Lastly, the challenges associated with implementing MBBFs in wastewater treatment are deliberated. This study aims to present a detailed and comprehensive overview of the application of MBBFs for wastewater treatment and biomass production. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 1837 KiB  
Article
Mitigation of Membrane Fouling in Membrane Bioreactors Using Granular and Powdered Activated Carbon: An Experimental Study
by Nataly Morales, Camila Mery-Araya, Paula Guerra, Rodrigo Poblete and Jaime Chacana-Olivares
Water 2024, 16(17), 2556; https://doi.org/10.3390/w16172556 - 9 Sep 2024
Viewed by 501
Abstract
This experimental study explores the mitigation of membrane fouling in membrane bioreactors (MBRs) through the combined use of granular activated carbon (GAC) and powdered activated carbon (PAC). The research assesses the impact of these materials on the fouling resistance, critical flux, and permeate [...] Read more.
This experimental study explores the mitigation of membrane fouling in membrane bioreactors (MBRs) through the combined use of granular activated carbon (GAC) and powdered activated carbon (PAC). The research assesses the impact of these materials on the fouling resistance, critical flux, and permeate quality using various mixed liquor suspended solids concentrations and carbon dosages. The results indicate that the GAC-PAC combination significantly reduces the total filtration resistance, particularly the cake layer resistance, by 11.7% to 13.6% compared to setups without activated carbon or with the individual carbon types. The study also reveals that this combination decreased the fouling rate by 15% to 24% at critical flux steps, demonstrating substantial improvements in fouling mitigation and operational efficiency. Furthermore, the GAC-PAC combination, which produces an adsorption process, enhances the permeate quality, achieving the near-complete removal of organic matter, total nitrogen, and turbidity, with total phosphorus removal reaching 99%. These findings demonstrate that the combined use of GAC and PAC not only reduces membrane fouling but also improves the overall MBR performance, making it a viable strategy for enhancing the efficiency of wastewater treatment processes. Full article
(This article belongs to the Special Issue Membrane Technology for Desalination and Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop