Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,149)

Search Parameters:
Keywords = wind energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9240 KiB  
Article
The Influence of Reduced Frequency on H-VAWT Aerodynamic Performance and Flow Field Near Blades
by Nianxi Yue, Congxin Yang and Shoutu Li
Energies 2024, 17(18), 4760; https://doi.org/10.3390/en17184760 (registering DOI) - 23 Sep 2024
Abstract
Studies demonstrate that the reduced frequency is influenced by the incoming wind speed and the rotor speed . As a dimensionless parameter, characterizes the stability of the flow field, which is a critical factor affecting the performance of vertical-axis wind turbines (VAWTs). This [...] Read more.
Studies demonstrate that the reduced frequency is influenced by the incoming wind speed and the rotor speed . As a dimensionless parameter, characterizes the stability of the flow field, which is a critical factor affecting the performance of vertical-axis wind turbines (VAWTs). This paper investigates the impact of on the performance of straight-blade vertical-axis wind turbines (H-VAWT). The findings indicate that 0.05 is the critical value of .The same results in a similar flow field structure, yet the performance changes vary with different . A decrease in or an increase in leads to an increase in the average value and fluctuation of , which subsequently reduces the rotor rotation torque and decreases the maximum wind energy utilization rate . This reduction in weakens the stability of the flow field. Additionally, the high-speed area of the blade’s trailing edge velocity trajectory at , , and expands with increasing range. Velocity dissipation in the high-speed area of the trailing edge affects the stability of the flow field within the rotor. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
19 pages, 2823 KiB  
Article
Multi-Period Optimal Transmission Switching with Voltage Stability and Security Constraints by the Minimum Number of Actions
by Mei Zhang, Lei Wang, Jiantao Liu, Xiaofan Deng and Ke Wu
Sustainability 2024, 16(18), 8272; https://doi.org/10.3390/su16188272 (registering DOI) - 23 Sep 2024
Abstract
Due to the ever-growing load demand and the deregulation of the electricity market, power systems often run near the stability boundaries, which deteriorates system voltage stability and raises voltage issues for the stable operations of power systems. Transmission switching (TS) has been applied [...] Read more.
Due to the ever-growing load demand and the deregulation of the electricity market, power systems often run near the stability boundaries, which deteriorates system voltage stability and raises voltage issues for the stable operations of power systems. Transmission switching (TS) has been applied to improve economic benefits and security operations for many applications. In this paper, a multi-period voltage stability-constrained problem (MP-VSTS) is established, intending to improve voltage security and the stability of a power system. Considering the online application of transmission switching, the minimum number of switching actions is taken as the objective function of the proposed MP-VSTS problem, which extends the TS application for real industries. The proposed model provides the switching lines for the upcoming period and the state of power systems for several successive periods. To overcome the solving difficulties of the proposed model, a two-stage approach is presented, which balances speed and accuracy. Numerical studies on the IEEE 118- and 662-bus power systems have demonstrated the proposed approach’s performance. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

36 pages, 1842 KiB  
Review
A Review of Agrivoltaic Systems: Addressing Challenges and Enhancing Sustainability
by Amro A. Zahrawi and Aly Mousaad Aly
Sustainability 2024, 16(18), 8271; https://doi.org/10.3390/su16188271 (registering DOI) - 23 Sep 2024
Abstract
Agrivoltaics is a relatively new term used originally for integrating photovoltaic (PV) systems into the agricultural landscape and expanded to applications such as animal farms, greenhouses, and recreational parks. The dual use of land offers multiple solutions for the renewable energy sector worldwide, [...] Read more.
Agrivoltaics is a relatively new term used originally for integrating photovoltaic (PV) systems into the agricultural landscape and expanded to applications such as animal farms, greenhouses, and recreational parks. The dual use of land offers multiple solutions for the renewable energy sector worldwide, provided it can be implemented without negatively impacting agricultural production. However, agrivoltaics represent a relatively new technology, facing challenges including economic viability, vulnerability to wind loads, and interference with growing crops. This paper reviews the recent research on integrating agrivoltaics with farming applications, focusing on challenges, wind impact on agrivoltaics, and economic solutions. The effect of agrivoltaics on temperature control of the lands is a critical factor in managing (1) water and the soil of the land, (2) animal comfort, and (3) greenhouse productivity, positively or negatively. In this review, a contradiction between the different versions of the American Society of Civil Engineers (ASCE) standards and the wind tunnel results is shown. Important factors affecting the wind load, such as damping and mass increase, optimum stow position, and aerodynamic edge modification, are highlighted with emphasis on the significant knowledge gap in the wind load mitigation methods. Full article
25 pages, 4418 KiB  
Article
Two-Stage Optimal Configuration Strategy of Distributed Synchronous Condensers at the Sending End of Large-Scale Wind Power Generation Bases
by Lang Zhao, Zhidong Wang, Yizheng Li, Xueying Wang, Zhiyun Hu and Yunpeng Xiao
Energies 2024, 17(18), 4748; https://doi.org/10.3390/en17184748 (registering DOI) - 23 Sep 2024
Abstract
The transmission end of large-scale wind power generation bases faces challenges such as high AC-DC coupling strength, low system inertia, and weak voltage support capabilities. Deploying distributed synchronous condensers (SCs) within and around wind farms can effectively provide transient reactive power support, enhance [...] Read more.
The transmission end of large-scale wind power generation bases faces challenges such as high AC-DC coupling strength, low system inertia, and weak voltage support capabilities. Deploying distributed synchronous condensers (SCs) within and around wind farms can effectively provide transient reactive power support, enhance grid system inertia at the transmission end, and improve dynamic frequency support capabilities. However, the high investment and maintenance costs of SCs hinder their large-scale deployment, necessitating the investigation of optimal SC configuration strategies at critical nodes in the transmission grid. Initially, a node inertia model was developed to identify weaknesses in dynamic frequency support, and a critical inertia constraint based on node frequency stability was proposed. Subsequently, a multi-timescale reactive power response model was formulated to quantify the impact on short-circuit ratio improvement and transient overvoltage suppression. Finally, a two-stage optimal configuration strategy for distributed SCs at the transmission end was proposed, considering dynamic frequency support and transient voltage stability. In the first stage, the optimal SC configuration aimed to maximize system inertia improvement per unit investment to meet dynamic frequency support requirements. In the second stage, the configuration results from the first stage were adjusted by incorporating constraints for enhancing the multiple renewable short-circuit ratio (MRSCR) and suppressing transient overvoltage. The proposed model was validated using the feeder grid of a large energy base in western China. The results demonstrate that the optimal configuration scheme effectively suppressed transient overvoltage at the generator end and significantly enhanced the system’s dynamic frequency support strength. Full article
Show Figures

Figure 1

24 pages, 5081 KiB  
Article
A 24-Step Short-Term Power Load Forecasting Model Utilizing KOA-BiTCN-BiGRU-Attentions
by Mingshen Xu, Wanli Liu, Shijie Wang, Jingjia Tian, Peng Wu and Congjiu Xie
Energies 2024, 17(18), 4742; https://doi.org/10.3390/en17184742 (registering DOI) - 23 Sep 2024
Abstract
With the global objectives of achieving a “carbon peak” and “carbon neutrality” along with the implementation of carbon reduction policies, China’s industrial structure has undergone significant adjustments, resulting in constraints on high-energy consumption and high-emission industries while promoting the rapid growth of green [...] Read more.
With the global objectives of achieving a “carbon peak” and “carbon neutrality” along with the implementation of carbon reduction policies, China’s industrial structure has undergone significant adjustments, resulting in constraints on high-energy consumption and high-emission industries while promoting the rapid growth of green industries. Consequently, these changes have led to an increasingly complex power system structure and presented new challenges for electricity demand forecasting. To address this issue, this study proposes a 24-step multivariate time series short-term load forecasting algorithm model based on KNN data imputation and BiTCN bidirectional temporal convolutional networks combined with BiGRU bidirectional gated recurrent units and attention mechanism. The Kepler adaptive optimization algorithm (KOA) is employed for hyperparameter optimization to effectively enhance prediction accuracy. Furthermore, using real load data from a wind farm in Xinjiang as an example, this paper predicts the electricity load from 1 January to 30 December in 2019. Experimental results demonstrate that our comprehensive short-term load forecasting model exhibits lower prediction errors and superior performance compared to traditional methods, thus holding great value for practical applications. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

17 pages, 4498 KiB  
Article
Performance Evaluation of Distance Relay Operation in Distribution Systems with Integrated Distributed Energy Resources
by David R. Garibello-Narváez, Eduardo Gómez-Luna and Juan C. Vasquez
Energies 2024, 17(18), 4735; https://doi.org/10.3390/en17184735 (registering DOI) - 23 Sep 2024
Abstract
This article presents the evaluation of the performance of the distance relay (ANSI function 21) when integrating Distributed Energy Resources (DERs) in a Local Distribution System (LDS). The aim is to understand the impacts of and the necessary modifications required in the operation [...] Read more.
This article presents the evaluation of the performance of the distance relay (ANSI function 21) when integrating Distributed Energy Resources (DERs) in a Local Distribution System (LDS). The aim is to understand the impacts of and the necessary modifications required in the operation of distance relays, considering different levels of DER aggregation, and identifying any threshold levels before issues arise. To achieve this, first, a comprehensive review was carried out to analyze the impacts generated in the protection systems. Second, by using the DigSilent Power Factory software, the implementation of the distance relay using a IEEE 13 Node Test Feeder was validated. The aggregation of the three fundamental types of DG, synchronous machines, solar panels, and wind turbines, was evaluated. The threshold at which distributed generation power injection begins to compromise distance protection performance was identified. This study compares the outcomes of using mho and quadrilateral protection schemes. Full article
(This article belongs to the Special Issue Planning, Operation and Control of Microgrids: 2nd Edition)
Show Figures

Figure 1

24 pages, 5311 KiB  
Article
Study on the Natural Ventilation Model of a Single-Span Plastic Greenhouse in a High-Altitude Area
by Youyu Li, Shumei Zhao, Anguo Dai, Jingfu Zhang, Zilong Fan and Tao Ding
Agronomy 2024, 14(9), 2166; https://doi.org/10.3390/agronomy14092166 (registering DOI) - 22 Sep 2024
Viewed by 248
Abstract
The natural ventilation model plays a crucial role in greenhouse environmental control. It has been extensively studied by previous researchers, but it is limited to low-altitude areas. This study established a numerical model of single-span plastic greenhouses in high-altitude areas. The model was [...] Read more.
The natural ventilation model plays a crucial role in greenhouse environmental control. It has been extensively studied by previous researchers, but it is limited to low-altitude areas. This study established a numerical model of single-span plastic greenhouses in high-altitude areas. The model was validated using measured data, showing a good agreement between the measured and simulated values. By setting boundary conditions based on on-site monitoring data, ventilation rates were extracted under different conditions for numerical simulations. Through nonlinear fitting, an empirical formula for natural ventilation rates, with a determination coefficient (R2) of 0.9724, was derived. The formula was validated through an energy balance analysis of indoor air. Different ventilation opening sizes were simulated to derive an empirical formula for natural ventilation rates based on opening size. Building on this, the relationship between plant height and ventilation rate was analyzed. As the dominant factors of natural ventilation change with environmental fluctuations, this study also proposed the threshold wind speed for wind pressure ventilation, thermal pressure ventilation, and coupled ventilation, filling the knowledge gap in relevant ventilation rate calculations. This is the first time that a natural ventilation model of single-span plastic greenhouses in high-altitude areas has been proposed, providing the basis in terms of modeling for the further development of local facility agriculture. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

27 pages, 3370 KiB  
Article
Preliminary Techno-Economic Study of Optimized Floating Offshore Wind Turbine Substructure
by Adebayo Ojo, Maurizio Collu and Andrea Coraddu
Energies 2024, 17(18), 4722; https://doi.org/10.3390/en17184722 (registering DOI) - 22 Sep 2024
Viewed by 356
Abstract
Floating offshore wind turbines (FOWTs) are still in the pre-commercial stage and, although different concepts of FOWTs are being developed, cost is a main barrier to commercializing the FOWT system. This article aims to use a shape parameterization technique within a multidisciplinary design [...] Read more.
Floating offshore wind turbines (FOWTs) are still in the pre-commercial stage and, although different concepts of FOWTs are being developed, cost is a main barrier to commercializing the FOWT system. This article aims to use a shape parameterization technique within a multidisciplinary design analysis and optimization framework to alter the shape of the FOWT platform with the objective of reducing cost. This cost reduction is then implemented in 30 MW and 60 MW floating offshore wind farms (FOWFs) designed based on the static pitch angle constraints (5 degrees, 7 degrees and 10 degrees) used within the optimization framework to estimate the reduction in the levelized cost of energy (LCOE) in comparison to a FOWT platform without any shape alteration–OC3 spar platform design. Key findings in this work show that an optimal shape alteration of the platform design that satisfies the design requirements, objectives and constraints set within the optimization framework contributes to significantly reducing the CAPEX cost and the LCOE in the floating wind farms considered. This is due to the reduction in the required platform mass for hydrostatic stability when the static pitch angle is increased. The FOWF designed with a 10 degree static pitch angle constraint provided the lowest LCOE value, while the FOWF designed with a 5 degree static pitch angle constraint provided the largest LCOE value, barring the FOWT designed with the OC3 dimension, which is considered to have no inclination. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

17 pages, 3066 KiB  
Article
Co-Design of a Wind–Hydrogen System: The Effect of Varying Wind Turbine Types on Techno-Economic Parameters
by Thorsten Reichartz, Georg Jacobs, Lucas Blickwedel, Dustin Frings and Ralf Schelenz
Energies 2024, 17(18), 4710; https://doi.org/10.3390/en17184710 (registering DOI) - 21 Sep 2024
Viewed by 337
Abstract
Green hydrogen is crucial for achieving climate neutrality and replacing fossil fuels in processes that are hard to electrify. Wind farms producing electricity and hydrogen can help mitigate stress on electricity grids and enable new markets for operators. While optimizing wind farms for [...] Read more.
Green hydrogen is crucial for achieving climate neutrality and replacing fossil fuels in processes that are hard to electrify. Wind farms producing electricity and hydrogen can help mitigate stress on electricity grids and enable new markets for operators. While optimizing wind farms for electricity production is well-established, optimizing combined wind–hydrogen systems is a relatively new research field. This study examines the potential profit of wind–hydrogen systems by conducting a case study of an onshore wind farm near the North Sea. Varying turbine types from high wind-speed turbines (with high annual energy production) to low wind-speed turbines (with high full-load hours) are examined. Findings indicate that in a combined hydrogen system, the low wind-speed turbines, which are sub-optimal for mere electricity production, yield lower levelized costs of hydrogen at a higher hydrogen production. Although high wind-speed turbines generate higher profits under current market conditions, at high hydrogen prices and low electricity prices, low wind-speed turbines can yield higher total profit at this site. Therefore, an integrated optimization approach of wind–hydrogen systems can, in certain cases, lead to better results compared to an isolated, sequential optimization of each individual system. Full article
Show Figures

Figure 1

33 pages, 3669 KiB  
Article
Smoke Emissions and Buoyant Plumes above Prescribed Burns in the Pinelands National Reserve, New Jersey
by Kenneth L. Clark, Michael R. Gallagher, Nicholas Skowronski, Warren E. Heilman, Joseph Charney, Matthew Patterson, Jason Cole, Eric Mueller and Rory Hadden
Fire 2024, 7(9), 330; https://doi.org/10.3390/fire7090330 (registering DOI) - 21 Sep 2024
Viewed by 250
Abstract
Prescribed burning is a cost-effective method for reducing hazardous fuels in pine- and oak-dominated forests, but smoke emissions contribute to atmospheric pollutant loads, and the potential exists for exceeding federal air quality standards designed to protect human health. Fire behavior during prescribed burns [...] Read more.
Prescribed burning is a cost-effective method for reducing hazardous fuels in pine- and oak-dominated forests, but smoke emissions contribute to atmospheric pollutant loads, and the potential exists for exceeding federal air quality standards designed to protect human health. Fire behavior during prescribed burns influences above-canopy sensible heat flux and turbulent kinetic energy (TKE) in buoyant plumes, affecting the lofting and dispersion of smoke. A more comprehensive understanding of how enhanced energy fluxes and turbulence are related during the passage of flame fronts could improve efforts to mitigate the impacts of smoke emissions. Pre- and post-fire fuel loading measurements taken during 48 operational prescribed burns were used to estimate the combustion completeness factors (CC) and emissions of fine particulates (PM2.5), carbon dioxide (CO2), and carbon monoxide (CO) in pine- and oak-dominated stands in the Pinelands National Reserve of southern New Jersey. During 11 of the prescribed burns, sensible heat flux and turbulence statistics were measured by tower networks above the forest canopy. Fire behavior when fire fronts passed the towers ranged from low-intensity backing fires to high-intensity head fires with some crown torching. Consumption of forest-floor and understory vegetation was a near-linear function of pre-burn loading, and combustion of fine litter on the forest floor was the predominant source of emissions, even during head fires with some crowning activity. Tower measurements indicated that above-canopy sensible heat flux and TKE calculated at 1 min intervals during the passage of fire fronts were strongly influenced by fire behavior. Low-intensity backing fires, regardless of forest type, had weaker enhancement of above-canopy air temperature, vertical and horizontal wind velocities, sensible heat fluxes, and TKE compared to higher-intensity head and flanking fires. Sensible heat flux and TKE in buoyant plumes were unrelated during low-intensity burns but more tightly coupled during higher-intensity burns. The weak coupling during low-intensity backing fires resulted in reduced rates of smoke transport and dispersion, and likely in more prolonged periods of elevated surface concentrations. This research facilitates more accurate estimates of PM2.5, CO, and CO2 emissions from prescribed burns in the Pinelands, and it provides a better understanding of the relationships among fire behavior, sensible heat fluxes and turbulence, and smoke dispersion in pine- and oak-dominated forests. Full article
Show Figures

Figure 1

28 pages, 3366 KiB  
Review
Towpreg—An Advanced Composite Material with a Potential for Pressurized Hydrogen Storage Vessels
by Anka Trajkovska Petkoska, Blagoja Samakoski, Bisera Samardjioska Azmanoska and Viktorija Velkovska
J. Compos. Sci. 2024, 8(9), 374; https://doi.org/10.3390/jcs8090374 (registering DOI) - 21 Sep 2024
Viewed by 268
Abstract
Hydrogen is one of the critical components to address global challenges such as climate change, environmental pollution and global warming. It is a renewable source of energy that has many advantages compared to other renewables. Even though it may not be a “silver [...] Read more.
Hydrogen is one of the critical components to address global challenges such as climate change, environmental pollution and global warming. It is a renewable source of energy that has many advantages compared to other renewables. Even though it may not be a “silver bullet” solution for the polluted world, there is still a big expectation that it can solve some of the energy crisis and challenges in the transportation, domestic and industry sectors. This study reviews the latest advancements in materials science, especially in the composite materials used for energy storage/transportation tanks. Special attention is given to towpreg material structures as the most promising ones for hydrogen storage. Various types of storage vessels are reviewed with emphasis on the most advanced type IV and type V vessels for energy (hydrogen) storage. The manufacturing processes, mainly filament winding (FW) and automatic fiber placement (AFP), are reviewed with their pros and cons. The sustainability aspects for the most promising hydrogen technologies, limitations and future challenges are also discussed. Full article
(This article belongs to the Special Issue Composite Materials for Energy Management, Storage or Transportation)
Show Figures

Figure 1

24 pages, 4682 KiB  
Article
Multi-Objective Short-Term Operation of Hydro–Wind–Photovoltaic–Thermal Hybrid System Considering Power Peak Shaving, the Economy and the Environment
by Yongqi Liu, Yuanyuan Li, Guibing Hou and Hui Qin
Energies 2024, 17(18), 4698; https://doi.org/10.3390/en17184698 (registering DOI) - 20 Sep 2024
Viewed by 393
Abstract
In recent years, renewable, clean energy options such as hydropower, wind energy and solar energy have been attracting more and more attention as high-quality alternatives to fossil fuels, due to the depletion of fossil fuels and environmental pollution. Multi-energy power systems have replaced [...] Read more.
In recent years, renewable, clean energy options such as hydropower, wind energy and solar energy have been attracting more and more attention as high-quality alternatives to fossil fuels, due to the depletion of fossil fuels and environmental pollution. Multi-energy power systems have replaced traditional thermal power systems. However, the output of solar and wind power is highly variable, random and intermittent, making it difficult to integrate it directly into the grid. In this context, a multi-objective model for the short-term operation of wind–solar–hydro–thermal hybrid systems is developed in this paper. The model considers the stability of the system operation, the operating costs and the impact in terms of environmental pollution. To solve the model, an evolutionary cost value region search algorithm is also proposed. The algorithm is applied to a hydro–thermal hybrid system, a multi-energy hybrid system and a realistic model of the wind–solar–hydro experimental base of the Yalong River Basin in China. The experimental results demonstrate that the proposed algorithm exhibits superior performance in terms of both convergence and diversity when compared to the reference algorithm. The integration of wind and solar energy into the power system can enhance the economic efficiency and mitigate the environment impact from thermal power generation. Furthermore, the inherent unpredictability of wind and solar energy sources introduces operational inconsistencies into the system loads. Conversely, the adaptable operational capacity of hydroelectric power plants enables them to effectively mitigate peak loads, thereby enhancing the stability of the power system. The findings of this research can inform decision-making regarding the economic, ecological and stable operation of hybrid energy systems. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 10336 KiB  
Article
Numerical Analysis of Leakage and Diffusion Characteristics of In-Situ Coal Gas with Complex Components
by Enbin Liu, Lianle Zhou, Ping Tang, Bo Kou, Xi Li and Xudong Lu
Energies 2024, 17(18), 4694; https://doi.org/10.3390/en17184694 (registering DOI) - 20 Sep 2024
Viewed by 361
Abstract
To alleviate the shortage of natural gas supply, the in-situ conversion of coal to natural gas is more beneficial for advancing the clean and efficient use of energy. Since in-situ coal gas contains complex components, such as H2, CH4, [...] Read more.
To alleviate the shortage of natural gas supply, the in-situ conversion of coal to natural gas is more beneficial for advancing the clean and efficient use of energy. Since in-situ coal gas contains complex components, such as H2, CH4, and CO, their leakage poses a serious risk to human life and property. Currently, the area of consequence of the harm caused by a leak in a gathering pipeline transporting in-situ coal gas has not been clarified. Therefore, this paper adopted the method of numerical simulation to pre-study the concentration distribution of each component and determined that the main components of concern are CO and H2 components. Afterward, the diffusion law of in-situ coal gas is analyzed and studied under different working conditions, such as wind speed, temperature, pipe diameter, leakage direction, and leakage aperture ratio. The results indicate that when a pipeline leak occurs, the CO component has the largest influence range. With increasing wind speed, the warning boundary of CO rapidly expands downwind, then gradually diminishes, reaching a peak value of 231.62 m at 7 m/s. The range of influence of the leaked gas is inversely proportional to temperature and directly proportional to pipe diameter and leakage aperture ratio. When the gas leaks laterally, the diffusion early warning boundary value of each component is maximal. Among them, the leakage aperture ratio has a significant impact on the concentration distribution of in-situ coal gas, whereas the effect of temperature is relatively minor. This study contributes to an understanding of the leakage and diffusion characteristics of in-situ coal gas-gathering pipelines. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Figure 1

18 pages, 5014 KiB  
Article
The Optimization of Supply–Demand Balance Dispatching and Economic Benefit Improvement in a Multi-Energy Virtual Power Plant within the Jiangxi Power Market
by Tang Xinfa, Wang Jingjing, Wang Yonghua and Wan Youwei
Energies 2024, 17(18), 4691; https://doi.org/10.3390/en17184691 (registering DOI) - 20 Sep 2024
Viewed by 429
Abstract
This paper presents an optimization method for scheduling a multi-energy VPP (Virtual Power Plant) supply–demand balance in the power market environment of Jiangxi Province. The primary objective of this method is to improve the operational efficiency of the power grid, reduce energy costs, [...] Read more.
This paper presents an optimization method for scheduling a multi-energy VPP (Virtual Power Plant) supply–demand balance in the power market environment of Jiangxi Province. The primary objective of this method is to improve the operational efficiency of the power grid, reduce energy costs, and facilitate economical and efficient energy distribution in the power market. The method takes into account the characteristics and uncertainties of renewable energy sources such as solar and wind energy, and incorporates advanced multi-objective optimization algorithms. Furthermore, it integrates real-time market price feedback to achieve the accurate allocation of power supply and demand. Through a case study of a multi-energy VPP in Jiangxi Province, this paper examines the optimal combination model for various energy sources within VPP, and analyzes the impact of different market environments on supply–demand balance. The results demonstrate that the proposed scheduling optimization method significantly improves economic benefits while ensuring grid stability. Compared with traditional power supply models, it reduces average electricity costs by 15% and increases renewable energy utilization efficiency by 20%. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

17 pages, 2190 KiB  
Article
Analysis of Demand Response in Electric Systems with Strong Presence of Intermittent Generation Using Conditional Value-at-Risk
by Rafael V. X. de Souza and Thales Sousa
Energies 2024, 17(18), 4688; https://doi.org/10.3390/en17184688 (registering DOI) - 20 Sep 2024
Viewed by 259
Abstract
The integration of renewable sources, such as hydro, wind, and solar power, into electrical systems has profoundly transformed the sector’s dynamics. The inherent intermittency of these energy sources, due to the uncertainty associated with inflows, winds, and solar irradiation, introduces considerable challenges in [...] Read more.
The integration of renewable sources, such as hydro, wind, and solar power, into electrical systems has profoundly transformed the sector’s dynamics. The inherent intermittency of these energy sources, due to the uncertainty associated with inflows, winds, and solar irradiation, introduces considerable challenges in the operation and planning of the electrical system. In this context, demand response emerges as a promising solution to handle the fluctuations in renewable generation and maintain system stability and reliability. Therefore, this study presents a new approach to the demand response program through the modeling of an optimal power flow problem to minimize operational costs, considering the uncertainties in hydro, wind, and solar generation by applying the Conditional Value-at-Risk (CVaR) risk metric. The mathematical modeling of the problem was conducted, and the problem was solved using the MINOS solver. To validate the model, simulations were carried out using modified IEEE systems of 14, 30, 57, and 118 buses, considering operation planning for the next 24 h. Furthermore, sensitivity analyses were performed by altering the CVaR parameters. As a result of the simulations, the total operational cost, electrical losses, and hourly generation at each bus by source type were determined, highlighting how CVaR impacts the operation of this type of system. Full article
Show Figures

Figure 1

Back to TopTop