Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,879)

Search Parameters:
Keywords = workflow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3079 KiB  
Article
Multiomics Screening Identified CpG Sites and Genes That Mediate the Impact of Exposure to Environmental Chemicals on Cardiometabolic Traits
by Majid Nikpay
Epigenomes 2024, 8(3), 29; https://doi.org/10.3390/epigenomes8030029 - 29 Jul 2024
Abstract
An understanding of the molecular mechanism whereby an environmental chemical causes a disease is important for the purposes of future applications. In this study, a multiomics workflow was designed to combine several publicly available datasets in order to identify CpG sites and genes [...] Read more.
An understanding of the molecular mechanism whereby an environmental chemical causes a disease is important for the purposes of future applications. In this study, a multiomics workflow was designed to combine several publicly available datasets in order to identify CpG sites and genes that mediate the impact of exposure to environmental chemicals on cardiometabolic traits. Organophosphate and prenatal lead exposure were previously reported to change methylation level at the cg23627948 site. The outcome of the analyses conducted in this study revealed that, as the cg23627948 site becomes methylated, the expression of the GNA12 gene decreases, which leads to a higher body fat percentage. Prenatal perfluorooctane sulfonate exposure was reported to increase the methylation level at the cg21153102 site. Findings of this study revealed that higher methylation at this site contributes to higher diastolic blood pressure by changing the expression of CHP1 and GCHFR genes. Moreover, HKR1 mediates the impact of B12 supplementation → cg05280698 hypermethylation on higher kidney function, while CTDNEP1 mediates the impact of air pollution → cg03186999 hypomethylation on higher systolic blood pressure. This study investigates CpG sites and genes that mediate the impact of environmental chemicals on cardiometabolic traits. Furthermore, the multiomics approach described in this study provides a convenient workflow with which to investigate the impact of an environmental factor on the body’s biomarkers, and, consequently, on health conditions, using publicly available data. Full article
Show Figures

Figure 1

17 pages, 1228 KiB  
Article
Non-Genetic Healthcare Providers’ Experiences and Perspectives with Rapid Genome-Wide Sequencing in Canadian Neonatal Intensive Care Units
by Lauren Piers, Tasha Wainstein, Gustavo Pelligra, Horacio Osiovich, GenCOUNSEL Study and Alison M. Elliott
Children 2024, 11(8), 910; https://doi.org/10.3390/children11080910 (registering DOI) - 28 Jul 2024
Viewed by 175
Abstract
Background/Objectives: Rapid genome-wide sequencing (rGWS) continues to transform the care provided to infants with genetic conditions in neonatal intensive care units (NICUs). Previous research has demonstrated that rGWS has immense benefits on patient care; however, little is known about non-genetic healthcare providers’ (HCPs) [...] Read more.
Background/Objectives: Rapid genome-wide sequencing (rGWS) continues to transform the care provided to infants with genetic conditions in neonatal intensive care units (NICUs). Previous research has demonstrated that rGWS has immense benefits on patient care; however, little is known about non-genetic healthcare providers’ (HCPs) experiences and perspectives of working with rGWS and supporting families through the rGWS testing process in Canadian NICU facilities. To address this gap, we surveyed and conducted semi-structured interviews with non-genetic HCPs of diverse professions from NICUs in British Columbia. Methods: An interpretive description approach was used to analyze interview transcripts to identify patterns and variations in non-genetic HCPs’ experiences and perceptions with rGWS. Results: Participants had varying degrees of exposure to rGWS and levels of comfort with the testing process. Numerous barriers affecting the implementation of rGWS were identified, including low levels of comprehension of rGWS, longer turn-around times than expected, and having to apply for provincial government approval to access testing. Participants desired more education on rGWS, clear guidelines on the use of rGWS in NICUs, and resources for non-genetic HCPs and parents to support implementation. Conclusions: The results from this study can inform the development of workflows and educational resources on the use of rGWS in NICUs, helping to ensure that the NICU team is supported to optimize rGWS implementation. Full article
(This article belongs to the Section Pediatric Neonatology)
Show Figures

Figure 1

16 pages, 3429 KiB  
Article
Towards Non-Destructive Quality Testing of Complex Biomedical Devices—A Generalized Closed-Loop System Approach Utilizing Real-Time In-Line Process Analytical Technology
by Bikash Guha, Sean Moore and Jacques Huyghe
NDT 2024, 2(3), 270-285; https://doi.org/10.3390/ndt2030017 - 26 Jul 2024
Viewed by 336
Abstract
This study addresses the critical issue of cardiovascular diseases (CVDs) as the leading cause of death globally, emphasizing the importance of stent delivery catheter manufacturing. Traditional manufacturing processes, reliant on destructive end-of-batch sampling, present significant financial and quality challenges. This research addresses this [...] Read more.
This study addresses the critical issue of cardiovascular diseases (CVDs) as the leading cause of death globally, emphasizing the importance of stent delivery catheter manufacturing. Traditional manufacturing processes, reliant on destructive end-of-batch sampling, present significant financial and quality challenges. This research addresses this challenge by proposing a novel approach: a closed-loop cyber-physical production system (CPPS) employing non-destructive process analytical technology (PAT). Through a mixed-method approach combining a comprehensive literature review and the development of a CPPS prototype, the study demonstrates the potential for real-time quality control, reduced production costs, and increased manufacturing efficiency. Initial findings showcase the system’s effectiveness in streamlining production, enhancing stability, and minimizing defects, translating to substantial financial savings and improved product quality. This work extends the author’s previous research by comparing the validated system’s performance to that of pre-implementation manual workflows and inspections, highlighting tangible and intangible improvements brought by the new system. This paves the way for advanced control strategies to revolutionize medical device manufacturing. Furthermore, the study proposes a generalized CPPS framework applicable across diverse regulated environments, ensuring optimal processing conditions and adherence to stringent regulatory standards. The research concludes with the successful demonstration of innovative approaches and technologies, leading to improved product quality, patient safety, and operational efficiency in the medical device industry. Full article
Show Figures

Figure 1

21 pages, 6616 KiB  
Article
Logging Lithology Discrimination with Enhanced Sampling Methods for Imbalance Sample Conditions
by Jingyue Liu, Fei Tian, Aosai Zhao, Wenhao Zheng and Wenjing Cao
Appl. Sci. 2024, 14(15), 6534; https://doi.org/10.3390/app14156534 - 26 Jul 2024
Viewed by 246
Abstract
In the process of lithology discrimination from a conventional well logging dataset, the imbalance in sample distribution restricts the accuracy of log identification, especially in the fine-scale reservoir intervals. Enhanced sampling balances the distribution of well logging samples of multiple lithologies, which is [...] Read more.
In the process of lithology discrimination from a conventional well logging dataset, the imbalance in sample distribution restricts the accuracy of log identification, especially in the fine-scale reservoir intervals. Enhanced sampling balances the distribution of well logging samples of multiple lithologies, which is of great significance to precise fine-scale reservoir characterization. This study employed data over-sampling and under-sampling algorithms represented by the synthetic minority over-sampling technique (SMOTE), adaptive synthetic sampling (ADASYN), and edited nearest neighbors (ENN) to process well logging dataset. To achieve automatic and precise lithology discrimination on enhanced sampled well logging dataset, support vector machine (SVM), random forest (RF), and gradient boosting decision tree (GBDT) models were trained using cross-validation and grid search methods. Aimed to objectively evaluate the performance of different models on different sampling results from multiple perspectives, the lithology discrimination results were evaluated and compared based on the Jaccard index and F1 score. By comparing the predictions of eighteen lithology discrimination workflows, a new discrimination process containing ADASYN, ENN, and RF has the most precise lithology discrimination result. This process improves the discrimination accuracy of fine-scale reservoir interval lithology, has great generalization ability, and is feasible in a variety of different geological environments. Full article
(This article belongs to the Topic Petroleum and Gas Engineering)
Show Figures

Figure 1

14 pages, 1122 KiB  
Article
Applying AI to Safely and Effectively Scale Care to Address Chronic MSK Conditions
by Anabela C. Areias, Dora Janela, Robert G. Moulder, Maria Molinos, Virgílio Bento, Carolina Moreira, Vijay Yanamadala, Fernando Dias Correia and Fabíola Costa
J. Clin. Med. 2024, 13(15), 4366; https://doi.org/10.3390/jcm13154366 - 26 Jul 2024
Viewed by 300
Abstract
Background/Objectives: The rising prevalence of musculoskeletal (MSK) conditions has not been balanced by a sufficient increase in healthcare providers. Scalability challenges are being addressed through the use of artificial intelligence (AI) in some healthcare sectors, with this showing potential to also improve [...] Read more.
Background/Objectives: The rising prevalence of musculoskeletal (MSK) conditions has not been balanced by a sufficient increase in healthcare providers. Scalability challenges are being addressed through the use of artificial intelligence (AI) in some healthcare sectors, with this showing potential to also improve MSK care. Digital care programs (DCP) generate automatically collected data, thus making them ideal candidates for AI implementation into workflows, with the potential to unlock care scalability. In this study, we aimed to assess the impact of scaling care through AI in patient outcomes, engagement, satisfaction, and adverse events. Methods: Post hoc analysis of a prospective, pre-post cohort study assessing the impact on outcomes after a 2.3-fold increase in PT-to-patient ratio, supported by the implementation of a machine learning-based tool to assist physical therapists (PTs) in patient care management. The intervention group (IG) consisted of a DCP supported by an AI tool, while the comparison group (CG) consisted of the DCP alone. The primary outcome concerned the pain response rate (reaching a minimal clinically important change of 30%). Other outcomes included mental health, program engagement, satisfaction, and the adverse event rate. Results: Similar improvements in pain response were observed, regardless of the group (response rate: 64% vs. 63%; p = 0.399). Equivalent recoveries were also reported in mental health outcomes, specifically in anxiety (p = 0.928) and depression (p = 0.187). Higher completion rates were observed in the IG (79.9% (N = 19,252) vs. CG 70.1% (N = 8489); p < 0.001). Patient engagement remained consistent in both groups, as well as high satisfaction (IG: 8.76/10, SD 1.75 vs. CG: 8.60/10, SD 1.76; p = 0.021). Intervention-related adverse events were rare and even across groups (IG: 0.58% and CG 0.69%; p = 0.231). Conclusions: The study underscores the potential of scaling MSK care that is supported by AI without compromising patient outcomes, despite the increase in PT-to-patient ratios. Full article
(This article belongs to the Section Clinical Rehabilitation)
Show Figures

Figure 1

29 pages, 2096 KiB  
Review
Chemical Migration from Wine Contact Materials
by Niki C. Maragou, Alexandros Tzachristas, Emmanouil D. Tsochatzis and Nikolaos S. Thomaidis
Appl. Sci. 2024, 14(15), 6507; https://doi.org/10.3390/app14156507 - 25 Jul 2024
Viewed by 319
Abstract
Wine quality and safety is affected by the food contact materials (FCMs) used. These materials are expected to protect the beverage from any chemical, physical, or biological hazard and preserve its composition stable throughout its shelf-life. However, the migration of chemical substances from [...] Read more.
Wine quality and safety is affected by the food contact materials (FCMs) used. These materials are expected to protect the beverage from any chemical, physical, or biological hazard and preserve its composition stable throughout its shelf-life. However, the migration of chemical substances from FCMs is a known phenomenon and requires monitoring. This review distinguishes the migrating chemical substances to those of (i) industrial origin with potential safety effects and those of (ii) natural occurrence, principally in cork (ex. tannins) with organoleptic quality effects. The review focuses on the migration of industrial chemical contaminants. Migration testing has been applied only for cork stoppers and tops, while other materials like polyethylene terephthalate (PET) bottles with aluminum cups, paperboard cartons, stainless steel vats, and oak casks have been examined for the presence of chemical migrating substances only by wine analysis without migration testing. The dominant analytical techniques applied are gas and liquid chromatography coupled to mass spectrometry (MS) for the determination of organic compounds and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and ICP-MS for elemental analysis. Targeted approaches are mostly applied, while limited non-target methodologies are reported. The identified migrating substances include authorized substances like phthalate plasticizers, monomers (bisphenol A), antioxidants (Irganox 1010), known but non-authorized substances (butylparaben), break-down products, oxidation products (nonylphenol), polyurethane adhesive by-products, oligomers, ink photoinitiators, and inorganic elements. A preliminary investigation of microplastics’ migration has also been reported. It is proposed that further research on the development of comprehensive workflows of target, suspect, and non-target analysis is required to shed more light on the chemical world of migration for the implementation of an efficient risk assessment and management of wine contact materials. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

30 pages, 706 KiB  
Review
Lung Cancer Subtyping: A Short Review
by Farzana Siddique, Mohamed Shehata, Mohammed Ghazal, Sohail Contractor and Ayman El-Baz
Cancers 2024, 16(15), 2643; https://doi.org/10.3390/cancers16152643 - 25 Jul 2024
Viewed by 313
Abstract
As of 2022, lung cancer is the most commonly diagnosed cancer worldwide, with the highest mortality rate. There are three main histological types of lung cancer, and it is more important than ever to accurately identify the subtypes since the development of personalized, [...] Read more.
As of 2022, lung cancer is the most commonly diagnosed cancer worldwide, with the highest mortality rate. There are three main histological types of lung cancer, and it is more important than ever to accurately identify the subtypes since the development of personalized, type-specific targeted therapies that have improved mortality rates. Traditionally, the gold standard for the confirmation of histological subtyping is tissue biopsy and histopathology. This, however, comes with its own challenges, which call for newer sampling techniques and adjunctive tools to assist in and improve upon the existing diagnostic workflow. This review aims to list and describe studies from the last decade (n = 47) that investigate three such potential omics techniques—namely (1) transcriptomics, (2) proteomics, and (3) metabolomics, as well as immunohistochemistry, a tool that has already been adopted as a diagnostic adjunct. The novelty of this review compared to similar comprehensive studies lies with its detailed description of each adjunctive technique exclusively in the context of lung cancer subtyping. Similarities between studies evaluating individual techniques and markers are drawn, and any discrepancies are addressed. The findings of this study indicate that there is promising evidence that supports the successful use of omics methods as adjuncts to the subtyping of lung cancer, thereby directing clinician practice in an economical and less invasive manner. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

18 pages, 679 KiB  
Review
Advancing Pathogen Identification: The Role of Digital PCR in Enhancing Diagnostic Power in Different Settings
by Alessia Mirabile, Giuseppe Sangiorgio, Paolo Giuseppe Bonacci, Dalida Bivona, Emanuele Nicitra, Carmelo Bonomo, Dafne Bongiorno, Stefania Stefani and Nicolò Musso
Diagnostics 2024, 14(15), 1598; https://doi.org/10.3390/diagnostics14151598 - 25 Jul 2024
Viewed by 440
Abstract
Digital polymerase chain reaction (dPCR) has emerged as a groundbreaking technology in molecular biology and diagnostics, offering exceptional precision and sensitivity in nucleic acid detection and quantification. This review highlights the core principles and transformative potential of dPCR, particularly in infectious disease diagnostics [...] Read more.
Digital polymerase chain reaction (dPCR) has emerged as a groundbreaking technology in molecular biology and diagnostics, offering exceptional precision and sensitivity in nucleic acid detection and quantification. This review highlights the core principles and transformative potential of dPCR, particularly in infectious disease diagnostics and environmental surveillance. Emphasizing its evolution from traditional PCR, dPCR provides accurate absolute quantification of target nucleic acids through advanced partitioning techniques. The review addresses the significant impact of dPCR in sepsis diagnosis and management, showcasing its superior sensitivity and specificity in early pathogen detection and identification of drug-resistant genes. Despite its advantages, challenges such as optimization of experimental conditions, standardization of data analysis workflows, and high costs are discussed. Furthermore, we compare various commercially available dPCR platforms, detailing their features and applications in clinical and research settings. Additionally, the review explores dPCR’s role in water microbiology, particularly in wastewater surveillance and monitoring of waterborne pathogens, underscoring its importance in public health protection. In conclusion, future prospects of dPCR, including methodological optimization, integration with innovative technologies, and expansion into new sectors like metagenomics, are explored. Full article
(This article belongs to the Special Issue Diagnosis and Prognosis of Sepsis)
Show Figures

Figure 1

29 pages, 4079 KiB  
Article
Digital Trio: Integration of BIM–EIR–IoT for Facilities Management of Mega Construction Projects
by Ahmed Mohammed Abdelalim, Ahmed Essawy, Aljawharah A. Alnaser, Amna Shibeika and Alaa Sherif
Sustainability 2024, 16(15), 6348; https://doi.org/10.3390/su16156348 - 24 Jul 2024
Viewed by 337
Abstract
Facility Management (FM) has increasingly focused on integrating Building Information Modeling (BIM) with the Internet of Things (IoT), known as digital twins, in large-scale development projects. Effective BIM integration in FM requires improved cooperation among participants across various project stages. This digital revolution [...] Read more.
Facility Management (FM) has increasingly focused on integrating Building Information Modeling (BIM) with the Internet of Things (IoT), known as digital twins, in large-scale development projects. Effective BIM integration in FM requires improved cooperation among participants across various project stages. This digital revolution aims to enhance planning, construction, and asset management efficiency, benefiting all parties. However, BIM utilization in FM is limited by incomplete owner understanding, insufficient data accessibility, and stakeholders’ unfamiliarity with BIM procedures and standards. Despite recognizing BIM’s significance, the FM industry faces significant implementation challenges. Facility managers often lack a comprehensive understanding of BIM’s benefits in streamlining operations and enhancing cost efficiency, as well as the necessary skills for its use. Addressing these barriers requires developing an Employer’s Information Requirements (EIR) document at a project’s outset, providing a strategic plan and vision for all involved parties. BIM and IoT are pivotal technologies for transitioning to efficient building operations and crucial for reducing time, costs, and operational challenges throughout any project. This research aims to establish a digital trio workflow, integrating BIM, EIR, and IoT to maximize stakeholder benefits. It explores how preparing the EIR through stakeholder communication can improve design processes, sustainability, efficiency, cost, and time, especially for megaprojects. Full article
Show Figures

Figure 1

15 pages, 3228 KiB  
Article
Exploring Canine Picornavirus Diversity in the USA Using Wastewater Surveillance: From High-Throughput Genomic Sequencing to Immuno-Informatics and Capsid Structure Modeling
by Temitope O. C. Faleye, Peter Skidmore, Amir Elyaderani, Sangeet Adhikari, Nicole Kaiser, Abriana Smith, Allan Yanez, Tyler Perleberg, Erin M. Driver, Rolf U. Halden, Arvind Varsani and Matthew Scotch
Viruses 2024, 16(8), 1188; https://doi.org/10.3390/v16081188 - 24 Jul 2024
Viewed by 307
Abstract
The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting [...] Read more.
The SARS-CoV-2 pandemic resulted in a scale-up of viral genomic surveillance globally. However, the wet lab constraints (economic, infrastructural, and personnel) of translating novel virus variant sequence information to meaningful immunological and structural insights that are valuable for the development of broadly acting countermeasures (especially for emerging and re-emerging viruses) remain a challenge in many resource-limited settings. Here, we describe a workflow that couples wastewater surveillance, high-throughput sequencing, phylogenetics, immuno-informatics, and virus capsid structure modeling for the genotype-to-serotype characterization of uncultivated picornavirus sequences identified in wastewater. Specifically, we analyzed canine picornaviruses (CanPVs), which are uncultivated and yet-to-be-assigned members of the family Picornaviridae that cause systemic infections in canines. We analyzed 118 archived (stored at −20 °C) wastewater (WW) samples representing a population of ~700,000 persons in southwest USA between October 2019 to March 2020 and October 2020 to March 2021. Samples were pooled into 12 two-liter volumes by month, partitioned (into filter-trapped solids [FTSs] and filtrates) using 450 nm membrane filters, and subsequently concentrated to 2 mL (1000×) using 10,000 Da MW cutoff centrifugal filters. The 24 concentrates were subjected to RNA extraction, CanPV complete capsid single-contig RT-PCR, Illumina sequencing, phylogenetics, immuno-informatics, and structure prediction. We detected CanPVs in 58.3% (14/24) of the samples generated 13,824,046 trimmed Illumina reads and 27 CanPV contigs. Phylogenetic and pairwise identity analyses showed eight CanPV genotypes (intragenotype divergence <14%) belonging to four clusters, with intracluster divergence of <20%. Similarity analysis, immuno-informatics, and virus protomer and capsid structure prediction suggested that the four clusters were likely distinct serological types, with predicted cluster-distinguishing B-cell epitopes clustered in the northern and southern rims of the canyon surrounding the 5-fold axis of symmetry. Our approach allows forgenotype-to-serotype characterization of uncultivated picornavirus sequences by coupling phylogenetics, immuno-informatics, and virus capsid structure prediction. This consequently bypasses a major wet lab-associated bottleneck, thereby allowing resource-limited settings to leapfrog from wastewater-sourced genomic data to valuable immunological insights necessary for the development of prophylaxis and other mitigation measures. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

19 pages, 28431 KiB  
Article
Photogrammetry of the Deep Seafloor from Archived Unmanned Submersible Exploration Dives
by Claudia H. Flores and Uri S. ten Brink
J. Mar. Sci. Eng. 2024, 12(8), 1250; https://doi.org/10.3390/jmse12081250 - 24 Jul 2024
Viewed by 293
Abstract
Large amounts of video images have been collected for decades by scientific and governmental organizations in deep (>1000 m) water using manned and unmanned submersibles and towed cameras. The collected images were analyzed individually or were mosaiced in small areas with great effort. [...] Read more.
Large amounts of video images have been collected for decades by scientific and governmental organizations in deep (>1000 m) water using manned and unmanned submersibles and towed cameras. The collected images were analyzed individually or were mosaiced in small areas with great effort. Here, we provide a workflow for utilizing modern photogrammetry to construct virtual geological outcrops hundreds or thousands of meters in length from these archived video images. The photogrammetry further allows quantitative measurements of these outcrops, which were previously unavailable. Although photogrammetry had been carried out in recent years in the deep sea, it had been limited to small areas with pre-defined overlapping dive paths. Here, we propose a workflow for constructing virtual outcrops from archived exploration dives, which addresses the complicating factors posed by single non-linear and variable-speed vehicle paths. These factors include poor navigation, variable lighting, differential color attenuation due to variable distance from the seafloor, and variable camera orientation with respect to the vehicle. In particular, the lack of accurate navigation necessitates reliance on image quality and the establishment of pseudo-ground-control points to build the photogrammetry model. Our workflow offers an inexpensive method for analyzing deep-sea geological environments from existing video images, particularly when coupled with rock samples. Full article
Show Figures

Figure 1

22 pages, 3439 KiB  
Article
A Novel Affordable and Reliable Framework for Accurate Detection and Comprehensive Analysis of Somatic Mutations in Cancer
by Rossano Atzeni, Matteo Massidda, Enrico Pieroni, Vincenzo Rallo, Massimo Pisu and Andrea Angius
Int. J. Mol. Sci. 2024, 25(15), 8044; https://doi.org/10.3390/ijms25158044 - 24 Jul 2024
Viewed by 531
Abstract
Accurate detection and analysis of somatic variants in cancer involve multiple third-party tools with complex dependencies and configurations, leading to laborious, error-prone, and time-consuming data conversions. This approach lacks accuracy, reproducibility, and portability, limiting clinical application. Musta was developed to address these issues [...] Read more.
Accurate detection and analysis of somatic variants in cancer involve multiple third-party tools with complex dependencies and configurations, leading to laborious, error-prone, and time-consuming data conversions. This approach lacks accuracy, reproducibility, and portability, limiting clinical application. Musta was developed to address these issues as an end-to-end pipeline for detecting, classifying, and interpreting cancer mutations. Musta is based on a Python command-line tool designed to manage tumor-normal samples for precise somatic mutation analysis. The core is a Snakemake-based workflow that covers all key cancer genomics steps, including variant calling, mutational signature deconvolution, variant annotation, driver gene detection, pathway analysis, and tumor heterogeneity estimation. Musta is easy to install on any system via Docker, with a Makefile handling installation, configuration, and execution, allowing for full or partial pipeline runs. Musta has been validated at the CRS4-NGS Core facility and tested on large datasets from The Cancer Genome Atlas and the Beijing Institute of Genomics. Musta has proven robust and flexible for somatic variant analysis in cancer. It is user-friendly, requiring no specialized programming skills, and enables data processing with a single command line. Its reproducibility ensures consistent results across users following the same protocol. Full article
(This article belongs to the Special Issue Molecular Research of Multi-omics in Cancer)
Show Figures

Figure 1

23 pages, 12771 KiB  
Article
Harmonized Landsat and Sentinel-2 Data with Google Earth Engine
by Elias Fernando Berra, Denise Cybis Fontana, Feng Yin and Fabio Marcelo Breunig
Remote Sens. 2024, 16(15), 2695; https://doi.org/10.3390/rs16152695 - 23 Jul 2024
Viewed by 323
Abstract
Continuous and dense time series of satellite remote sensing data are needed for several land monitoring applications, including vegetation phenology, in-season crop assessments, and improving land use and land cover classification. Supporting such applications at medium to high spatial resolution may be challenging [...] Read more.
Continuous and dense time series of satellite remote sensing data are needed for several land monitoring applications, including vegetation phenology, in-season crop assessments, and improving land use and land cover classification. Supporting such applications at medium to high spatial resolution may be challenging with a single optical satellite sensor, as the frequency of good-quality observations can be low. To optimize good-quality data availability, some studies propose harmonized databases. This work aims at developing an ‘all-in-one’ Google Earth Engine (GEE) web-based workflow to produce harmonized surface reflectance data from Landsat-7 (L7) ETM+, Landsat-8 (L8) OLI, and Sentinel-2 (S2) MSI top of atmosphere (TOA) reflectance data. Six major processing steps to generate a new source of near-daily Harmonized Landsat and Sentinel (HLS) reflectance observations at 30 m spatial resolution are proposed and described: band adjustment, atmospheric correction, cloud and cloud shadow masking, view and illumination angle adjustment, co-registration, and reprojection and resampling. The HLS is applied to six equivalent spectral bands, resulting in a surface nadir BRDF-adjusted reflectance (NBAR) time series gridded to a common pixel resolution, map projection, and spatial extent. The spectrally corresponding bands and derived Normalized Difference Vegetation Index (NDVI) were compared, and their sensor differences were quantified by regression analyses. Examples of HLS time series are presented for two potential applications: agricultural and forest phenology. The HLS product is also validated against ground measurements of NDVI, achieving very similar temporal trajectories and magnitude of values (R2 = 0.98). The workflow and script presented in this work may be useful for the scientific community aiming at taking advantage of multi-sensor harmonized time series of optical data. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

18 pages, 18445 KiB  
Article
Advanced Industrial Fault Detection: A Comparative Analysis of Ultrasonic Signal Processing and Ensemble Machine Learning Techniques
by Amirhossein Moshrefi and Frederic Nabki
Appl. Sci. 2024, 14(15), 6397; https://doi.org/10.3390/app14156397 - 23 Jul 2024
Viewed by 317
Abstract
Modern condition monitoring and industrial fault prediction have advanced to include intelligent techniques, aiming to improve reliability, productivity, and safety. The integration of ultrasonic signal processing with various machine learning (ML) models can significantly enhance the efficiency of industrial fault diagnosis. In this [...] Read more.
Modern condition monitoring and industrial fault prediction have advanced to include intelligent techniques, aiming to improve reliability, productivity, and safety. The integration of ultrasonic signal processing with various machine learning (ML) models can significantly enhance the efficiency of industrial fault diagnosis. In this paper, ultrasonic data are analyzed and applied to ensemble ML algorithms. Four methods for reducing dimensionality are employed to illustrate differences among acoustic faults. Different features in the time domain are extracted, and predictive ensemble models including a gradient boosting classifier (GB), stacking classifier (Stacking), voting classifier (Voting), Adaboost, Logit boost (Logit), and bagging classifier (Bagging) are implemented. To assess the model’s performance on new data during experiments, k-fold cross-validation (CV) was employed. Based on the designed workflow, GB demonstrated the highest performance, with less variation over 5 cross-folds. Finally, the real-time capability of the model was evaluated by deployment on an ARM Cortex-M4F microcontroller (MCU). Full article
Show Figures

Figure 1

18 pages, 4480 KiB  
Review
Wearable Near-Eye Tracking Technologies for Health: A Review
by Lisen Zhu, Jianan Chen, Huixin Yang, Xinkai Zhou, Qihang Gao, Rui Loureiro, Shuo Gao and Hubin Zhao
Bioengineering 2024, 11(7), 738; https://doi.org/10.3390/bioengineering11070738 - 22 Jul 2024
Viewed by 231
Abstract
With the rapid advancement of computer vision, machine learning, and consumer electronics, eye tracking has emerged as a topic of increasing interest in recent years. It plays a key role across diverse domains including human–computer interaction, virtual reality, and clinical and healthcare applications. [...] Read more.
With the rapid advancement of computer vision, machine learning, and consumer electronics, eye tracking has emerged as a topic of increasing interest in recent years. It plays a key role across diverse domains including human–computer interaction, virtual reality, and clinical and healthcare applications. Near-eye tracking (NET) has recently been developed to possess encouraging features such as wearability, affordability, and interactivity. These features have drawn considerable attention in the health domain, as NET provides accessible solutions for long-term and continuous health monitoring and a comfortable and interactive user interface. Herein, this work offers an inaugural concise review of NET for health, encompassing approximately 70 related articles published over the past two decades and supplemented by an in-depth examination of 30 literatures from the preceding five years. This paper provides a concise analysis of health-related NET technologies from aspects of technical specifications, data processing workflows, and the practical advantages and limitations. In addition, the specific applications of NET are introduced and compared, revealing that NET is fairly influencing our lives and providing significant convenience in daily routines. Lastly, we summarize the current outcomes of NET and highlight the limitations. Full article
Show Figures

Figure 1

Back to TopTop