Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Advertisement

São Paulo Journal of Mathematical Sciences

, Volume 12, Issue 2, pp 359–376 | Cite as

Representations of a central extension of the simple Lie superalgebra \(\mathfrak p(3)\)

  • Vera SerganovaEmail author
Article
  • 68 Downloads

Abstract

We classify irreducible finite-dimensional representations of a non-trivial central extension of the Lie superalgebra \(\mathfrak p(3)\), and compute their characters.

Keywords

Lie superalgebra Central extension Simple module 

Mathematics Subject Classification

17B10 

References

  1. 1.
    Balagovic, M., Daugherty, Z., Entova-Aizenbud, I., Halacheva, I., Hennig, J., Im, M.S., Letzter, G., Norton, E., Serganova, V., Stroppel, C.: Translation functors and decomposition numbers for the periplectic Lie superalgebra \(\mathfrak{p}(n)\). MRL (to appear). arXiv:1610.08470
  2. 2.
    Brundan, J.: Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \(gl(m|n)\). J. Am. Math. Soc. 16, 185–231 (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Brundan, J.: Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra \(q(n)\). Adv. Math. 182, 28–77 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brundan, J., Stroppel, C.: Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup. J. Eur. Math. Soc. (JEMS) 14, 373–419 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, C.-W.: Finite-dimensional representations of periplectic Lie superalgebras. J. Algebra 443, 99–125 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coulembier, K.: The periplectic Brauer algebra. arXiv:1609.06760
  7. 7.
    Matsumoto, T., Molev, A.: Representations of centrally extended Lie superalgebra \(\mathfrak{psl}(2|2)\). J. Math. Phys. 55, 091704 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8–96 (1977)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kac, V.G.: Representations of classical Lie superalgebras. Differential geometrical methods in mathematical physics, II. Proceedings of Conference, University of Bonn, Bonn, 1977, Lecture Notes in Mathematics, vol. 676, pp. 597–626. Springer, Berlin (1978)Google Scholar
  10. 10.
    Penkov, I., Serganova, V.: Characters of irreducible G-modules and cohomology of G/P for the Lie supergroup \(G=Q(N)\). Algebraic geometry, 7. J. Math. Sci. (New York) 84, 1382–1412 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Serganova, V.: Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra \(gl(m|n)\). Selecta Math. (N.S.) 2, 607–651 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Shapovalov, A.: Invariant differential operators and irreducible representations of finite-dimensional Hamiltonian and Poisson Lie superalgebras. Serdica Math. J. 7, 337–342 (1981). (in Russian)MathSciNetzbMATHGoogle Scholar

Copyright information

© Instituto de Matemática e Estatística da Universidade de São Paulo 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of California at BerkeleyBerkeleyUSA

Personalised recommendations