Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access December 22, 2021

Caribou and reindeer migrations in the changing Arctic

  • Kyle Joly EMAIL logo , Anne Gunn , Steeve D. Côté , Manuela Panzacchi , Jan Adamczewski , Michael J. Suitor and Eliezer Gurarie
From the journal Animal Migration

Abstract

Caribou and reindeer, Rangifer tarandus, are the most numerous and socio-ecologically important terrestrial species in the Arctic. Their migrations are directly and indirectly affected by the seasonal nature of the northernmost regions, human development and population size; all of which are impacted by climate change. We review the most critical drivers of Rangifer migration and how a rapidly changing Arctic may affect them. In order to conserve large Rangifer populations, they must be allowed free passage along their migratory routes to reach seasonal ranges. We also provide some pragmatic ideas to help conserve Rangifer migrations into the future.

References

[1] Bernes C., Brathen K.A., Forbes B.C., Speed J.D.M., Moen, J., What are the impacts of reindeer/caribou (Rangifer tarandus L.) on arctic and alpine vegetation? A systematic review, Environmental Evidence, 2015, 4 (4), DOI 10.1186/s13750-014-0030-3.10.1186/s13750-014-0030-3Search in Google Scholar

[2] Joly K., Gurarie E., Sorum M.S., Kaczensky P., Cameron M.D., Jakes A.F., Borg B.L., Nandintsetseg D., Hopcraft J.G.C., Buuveibaatar B., Jones P.F., Mueller T., Walzer C., Olson K.A., Payne J.C., A. Yadamsuren A., Hebblewhite M., Longest terrestrial migrations and movements around the world, Scientific Reports, 2019, 9, 1-10. Article 15333, DOI: 10.1038/s41598-019-51884-5.10.1038/s41598-019-51884-5Search in Google Scholar

[3] Le Corre M., Dussault C., Côté, S.D., Weather conditions and variation in timing of spring and fall migrations of migratory caribou, Journal of Mammalogy, 2017, 98, 260–271, DOI: 10.1093/jmammal/gyw177.10.1093/jmammal/gyw177Search in Google Scholar

[4] Jordhøy P., Ancient wild reindeer pitfall trapping systems as indicators for former migration patterns and habitat use in the Dovre region, southern Norway, Rangifer, 2008, 28 (1), 79-87. DOI: 10.7557/2.28.1.15.Search in Google Scholar

[5] Parlee B.L., Sandlos J., Natcher D.C., Undermining subsistence: Barren-ground caribou in a “tragedy of open access”, Science Advances, 2018, 4, e1701611. DOI: 10.1126/sciadv.1701611.10.1126/sciadv.1701611Search in Google Scholar

[6] Semmens D.J., Diffendorfer J.E., Lopez-Hoffman L., Shapiro C.D., Accounting for the ecosystem services of migratory species: quantifying migration support and spatial subsidies, Ecological Economics, 2011, 70 (12), 2236–2242.10.1016/j.ecolecon.2011.07.002Search in Google Scholar

[7] Burch E.S., The caribou/wild reindeer as a human resource, American Antiquity, 1972, 37 (3), 339–368, DOI: 10.2307/278435.10.2307/278435Search in Google Scholar

[8] Gordon B., 8000 years of caribou and human seasonal migration in the Canadian Barrenlands, Rangifer Special Issue, 2005, 16, 155–162.10.7557/2.25.4.1780Search in Google Scholar

[9] Kendrick A., Lyver P.O.B., Lutsel K’E Dene First Nation, Denésoliné (Chipewyan) knowledge of barren-ground caribou (Rangifer tarandus groenlandicus) movements. Arctic, 2005, 58, 175–191.10.14430/arctic409Search in Google Scholar

[10] Fryxell J.M., Sinclair A.R.E., Causes and consequences of migration by large herbivores. Trends in Ecology and Evolution, 1988, 3, 237–241.10.1016/0169-5347(88)90166-8Search in Google Scholar

[11] Avgar T., Street G., Fryxell J.M., On the adaptive benefits of mammal migration, Canadian Journal of Zoology, 2014, 92, 481–490.10.1139/cjz-2013-0076Search in Google Scholar

[12] van Moorter, B., Engen S., Fryxell. J.M., Panzacchi M., Nilsen E.B., Mysterud A., Consequences of barriers and changing seasonality on population dynamics and harvest of migratory ungulates, Theoretical Ecology, 2020, 13, 595–605, DOI: 10.1007/s12080-020-00471-w.10.1007/s12080-020-00471-wSearch in Google Scholar

[13] Cameron M.D., Joly K., Breed G.A., Mulder C.P.H., Kielland K., Pronounced fidelity and selection for average conditions of calving area suggestive of spatial memory in a highly migratory ungulate. Frontiers in Ecology and Evolution, 2020, 8, 564567, DOI: 10.3389/fevo.2020.564567.10.3389/fevo.2020.564567Search in Google Scholar

[14] Estes R.D., The significance of breeding synchrony in the wildebeest, East African Wildlife Journal, 1976, 14, 135–152.10.1111/j.1365-2028.1976.tb00158.xSearch in Google Scholar

[15] Bergerud A.T., Luttich S.N., Camps L., Return of caribou to Ungava, McGill-Queen’s University Press, 2008, Montreal, Quebec, Canada, 656 pp., doi:10.2307/j.ctt817j4.10.2307/j.ctt817j4Search in Google Scholar

[16] Severson J.P., Johnson H.E., Arthur S.M., Leacock W.B., Suitor M.J, Spring phenology drives range shifts in a migratory Arctic ungulate with key implications for the future, Global Change Biology, 2021, 27, 4546–4563, DOI: 10.1111/gcb.15682.10.1111/gcb.15682Search in Google Scholar PubMed PubMed Central

[17] Walsh N.E., Fancy, S.G., McCabe T.R., Pank F., Habitat use by the Porcupine Caribou Herd during predicted insect harassment, Journal of Wildlife Management, 1992, 56, 465–473.10.2307/3808860Search in Google Scholar

[18] Joly K., Couriot O., Cameron M.D., Gurarie E., Behavioral, physiological, demographic and ecological impacts of hematophagous and endoparasitic insects on an arctic ungulate. Toxins, 2020, 12 (5), 334, DOI:10.3390/toxins12050334.10.3390/toxins12050334Search in Google Scholar PubMed PubMed Central

[19] Joly K., Gurarie E., Hansen, D.A., M. D. Cameron M.D., Seasonal patterns of spatial fidelity and temporal consistency in the distribution and movements of a migratory ungulate, Ecology and Evolution, 2021, 11 (12), 8183-8200, DOI: 10.1002/ece3.7650.10.1002/ece3.7650Search in Google Scholar PubMed PubMed Central

[20] Joly K., Cameron M.D., Early fall and late winter diets of migratory caribou in northwest Alaska. Rangifer, 2018, 38 (1), 27-38, DOI: 10.7557/2.38.1.4107.10.7557/2.38.1.4107Search in Google Scholar

[21] Le Corre M., Dussault C., Côté, S.D., 2020. Where to spend the winter? The role of intraspecific competition and climate in determining the selection of wintering areas by migratory caribou. Oikos, 2020, 129, 512-525, DOI: 10.1111/oik.06668.10.1111/oik.06668Search in Google Scholar

[22] Gurarie, E., Hebblewhite M., Joly K., Kelly A.P., Adamczewski J., Davidson S.C., Davison T., Gunn A., Suitor M.J., Fagan W.F., Boelman N., Tactical departures and strategic arrivals: Divergent effects of climate and weather on caribou spring migrations, Ecosphere, 2019, 10 (12), e02971, DOI: 10.1002/ecs2.2971.10.1002/ecs2.2971Search in Google Scholar

[23] Berdahl A., van Leeuwen A., Levin S.A., Torney C.J., Collective behavior as a driver of critical transitions in migratory populations. Movement Ecology, 2016, 4, 18, DOI: 10.1186/s40462-016-0083-8.10.1186/s40462-016-0083-8Search in Google Scholar PubMed PubMed Central

[24] Dalziel B.D., Corre M.L., Côté S.D., Ellner S.P., Detecting collective behaviour in animal relocation data, with application to migrating caribou. Methods Ecology and Evolution, 2016, 7, 30–41, DOI: 10.1111/2041-210X.12437.10.1111/2041-210X.12437Search in Google Scholar

[25] Jesmer B.R., Merkle J.A., Goheen, J.R., Aikens E.O., Beck, J.L., Courtemanch A.B., Hurley, M.A., McWhirter D.E., Miyasaki H.M., Monteith K.L., Kauffman M.J., Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals, Science, 2018, 361 (6406), 1023-1025, DOI: 10.1126/science.aat0985.10.1126/science.aat0985Search in Google Scholar PubMed

[26] Torney C.J., Lamont M., Debell L., Angohiatok R.J., Leclerc L.-M., Berdahl A.M., Inferring the rules of social interaction in migrating caribou, Philosophical Transactions of the Royal Society B, 2018, 373, 20170385. DOI: 10.1098/rstb.2017.0385.10.1098/rstb.2017.0385Search in Google Scholar PubMed PubMed Central

[27] Gunn A., Voles, lemmings and caribou – population cycles revisited? Rangifer Special Issue. 2003, 14, 105-111.Search in Google Scholar

[28] Joly K., Klein D.R., Verbyla D.L., Rupp T.S., Chapin, F.S. III, Linkages between large-scale climate patterns and the dynamics of Alaska caribou populations, Ecography, 2011, 34 (2), 345-352, DOI: 10.1111/j.1600-0587.2010.06377.x.10.1111/j.1600-0587.2010.06377.xSearch in Google Scholar

[29] Côté S.D., Festa-Bianchet M., Dussault C., Tremblay J.-P., Brodeur V., Simard M., Taillon J., Hins C., Le Corre M., Sharma S., Caribou herd dynamics: impacts of climate change on traditional and sport harvesting. In Allard, M. and M. Lemay (eds), Nunavik and Nunatsiavut: From science to policy. An Integrated Regional Impact Study (IRIS) of climate change and modernization, ArcticNet Inc., 2012, Quebec City, Canada, pp. 249-269.Search in Google Scholar

[30] Festa-Bianchet M., Ray J.C., Boutin S., Côté S.D., Gunn A., Conservation of caribou (Rangifer tarandus) in Canada: an uncertain future, Canadian Journal of Zoology, 2011, 89 (5),: 419-434, DOI:10.1139/z11-025.10.1139/z11-025Search in Google Scholar

[31] [31] COSEWIC, COSEWIC assessment and status report on the Caribou Rangifer tarandus, Barren-ground population, in Canada, Committee on the Status of Endangered Wildlife in Canada, 2016, Ottawa, Canada, www.canada.ca/en/environment-climate-change/services/species-risk-public-registry.html.Search in Google Scholar

[32] Virgl J.A., Rettie W.J., Coulton D.W., Spatial and temporal changes in seasonal range attributes in a declining barren-ground caribou herd, Rangifer, 2017, 37: 31–46, DOI 10.7557/2.37.1.4115.10.7557/2.37.1.4115Search in Google Scholar

[33] Caribou Ungava, unpublished data.Search in Google Scholar

[34] Poole K.G., Gunn A., Wierzchowski J., Anderson M., Peary caribou distribution within the Bathurst Island Complex relative to the boundary proposed for Qausuittuq National Park, Nunavut, Rangifer, 2015, 35 (2), 81-98, DOI: 10.7557/2.35.2.3635.10.7557/2.35.2.3635Search in Google Scholar

[35] Wolfe S.A., Griffith B., Wolfe, C.A.G., Response of reindeer and caribou to human activities, Polar Research, 2000, 19 (1), 63-73.10.3402/polar.v19i1.6531Search in Google Scholar

[36] Panzacchi M., Van Moorter B., Jordhøy P., Strand O., Learning from the past to predict the future: using archaeological findings and GPS data to quantify reindeer sensitivity to anthropogenic disturbance in Norway, Landscape Ecology, 2013, 28, 847–859, DOI 10.1007/s10980-012-9793-5.10.1007/s10980-012-9793-5Search in Google Scholar

[37] Panzacchi M., Van Moorter B., Strand O., Saerens M., Kivima I.,St. Clair C.C., Herfindal I., Boitani, L., Predicting the continuum between corridors and barriers to animal movements using Step Selection Functions and Randomized Shortest Paths, Journal of Animal Ecology, 2016, 85, 32–42, DOI: 10.1111/1365-2656.12386.10.1111/1365-2656.12386Search in Google Scholar PubMed

[38] Panzacchi M., Van Moorter B., Strand O., A road in the middle of one of the last wild reindeer migration routes in Norway: crossing behaviour and threats to conservation, Rangifer, 2013, 33, Special Issue No. 21, 15–26, DOI: 10.7557/2.33.2.2521.10.7557/2.33.2.2521Search in Google Scholar

[39] Cagnacci F., Focardi S., Ghisla A., van Moorter B., Merrill E.H., Gurarie E., Heurich M., Mysterud A., Linnell J., Panzacchi M., May R., Nygård T., Rolandsen C., Hebblewhite M., How many routes lead to migration? Comparison of methods to assess and characterize migratory movements, Journal of Animal Ecology, 2016, 85 (1), 54-68, DOI: 10.1111/1365-2656.12449.10.1111/1365-2656.12449Search in Google Scholar PubMed

[40] Kauffman, M.J., et al., 2021. Mapping out a future for ungulate migrations, Science, 2021, 372 (6542), 566-569, DOI: 10.1126/science.abf0998.10.1126/science.abf0998Search in Google Scholar PubMed

[41] Joly K. Cameron M.D., Caribou vital sign annual report for the Arctic Network Inventory and Monitoring Program: September 2019–August 2020. Natural Resource Report, 2020, NPS/ARCN/NRR—2020/2210, National Park Service, Fort Collins, Colorado, https://doi.org/10.36967/nrr-2282429.10.36967/nrr-2282429Search in Google Scholar

[42] Leblond M., St-Laurent M.-H., Côté S.D., Caribou, water, and ice – fine-scale movements of a migratory arctic ungulate in the context of climate change. Movement Ecology, 2016, 4, 14.10.1186/s40462-016-0079-4Search in Google Scholar PubMed PubMed Central

[43] Paniw M., James T.D., Archer C.R., Römer G., Levin S., Compagnoni A., Che-Castaldo J., Bennett J.M., Mooney A., Childs D.Z., Ozgul A., Jones O.R., Burns J.H., Beckerman A.P., Patwary A., Sanchez-Gassen N., Knight T.M., Salguero-Gómez R., 2021. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis, Journal of Animal Ecology, 2021, 90, 1398-1407.10.1111/1365-2656.13467Search in Google Scholar PubMed

[44] Campeau A.B., Rickbeil G.J.M., Coops N.C., Côté S.D., Long-term changes in the primary productivity of migratory caribou (Rangifer tarandus) calving grounds and summer pasture on the Quebec-Labrador Peninsula (Northeastern Canada): the mixed influences of climate change and caribou herbivory, Polar Biology, 2019, 42, 1005-1023.10.1007/s00300-019-02492-6Search in Google Scholar

[45] Plante S., Dussault C., Richard J.H., Côté S.D., Human disturbance effects and cumulative habitat loss in endangered migratory caribou, Biological Conservation, 2018, 224, 129–43.10.1016/j.biocon.2018.05.022Search in Google Scholar

[46] Wilson R.R., Parrett L.S., Joly K., Dau, J.R., Effects of roads on individual caribou movements during migration. Biological Conservation, 2016, 195, 2-8, DOI: 10.1016/j. biocon.2015.12.035.Search in Google Scholar

[47] Harris G., Thirgood S., Hopcraft J.G.C., Cromsigt J.P., Berger J., Global decline in aggregated migrations of large terrestrial mammals. Endangered Species Research, 2009, 7 (1), 55–76.10.3354/esr00173Search in Google Scholar

[48] Russell D.E., Martell A.M., Nixon W.A.C., Range ecology of the Porcupine Caribou Herd in Canada. Rangifer Special Issue, 1993, 8, 1-167.10.7557/2.13.5.1057Search in Google Scholar

[49] Faille G., Dussault C., Ouellet J.-P., Fortin D., Courtois R., St-Laurent M.-H., Dussault C., Range fidelity: The missing link between caribou decline and habitat alteration?, Biological Conservation, 2010, 143, 2840–2850, DOI: 10.1016/j.biocon.2010.08.001.10.1016/j.biocon.2010.08.001Search in Google Scholar

[50] Joly, K., Jandt R.R., Klein, D.R., Decrease of lichens in arctic ecosystems: role of wildfire, caribou and reindeer, competition, and climate change, Polar Research, 2009, 28 (3), 433-442, DOI: 10.1111/j.1751-8369.2009.00113.x.10.1111/j.1751-8369.2009.00113.xSearch in Google Scholar

[51] M. Campbell, personal communication.Search in Google Scholar

[52] Gunn, A., D’Hont A., Williams J., Boulanger J., Satellite-collaring in the Bathurst herd of barren-ground caribou 1996-2005. Department of Environment and Natural Resources Manuscript, 2013, Report No. 223, 191pp.Search in Google Scholar

[53] Ferguson M.A.D., Gauthier L., Messier F., Range shift and winter foraging ecology of a population of Arctic tundra caribou, Canadian Journal of Zoology, 2001, 79: 746–758.10.1139/z01-013Search in Google Scholar

[54] Joly K., Jandt R.R., Meyers C.R., Cole, M.J., Changes in vegetative cover on Western Arctic Herd winter range from 1981-2005: potential effects of grazing and climate change, Rangifer Special Issue 17, 2007, 199-207, DOI: 10.7557/2.27.4.345.10.7557/2.27.4.345Search in Google Scholar

[55] Duchesne M., Côté S.D., Barrette C., Responses of woodland caribou to winter ecotourism in the Charlevoix Biosphere Reserve, Canada. Biological Conservation, 2000, 96, 311-317.10.1016/S0006-3207(00)00082-3Search in Google Scholar

[56] Nellemann C., Vistnes I., Jordhøy P., O. Strand O., A. Newton A., Progressive impact of piecemeal infrastructure development on wild reindeer, Biological Conservation, 2003, 13 (2), 307-317, DOI: 10.1016/S0006-3207(03)00048-X.10.1016/S0006-3207(03)00048-XSearch in Google Scholar

[57] Plante S., Dussault C., Côté, S.D., Landscape attributes explain caribou vulnerability to sport hunting. Journal of Wildlife Management, 2017, 81, 238-247.10.1002/jwmg.21203Search in Google Scholar

[58] Chen W., et al., Does dust from arctic mines affect caribou forage?, Journal of Environmental Protection, 2017, 8, 258–76.10.4236/jep.2017.83020Search in Google Scholar

[59] Adamczewski J., Boulanger J., Gunn A., Croft B., Cluff D., Elkin B., Nishi J., Kelly A., D’Hont A., Nicolson C., Decline in the Bathurst caribou herd 2006–2009: a technical evaluation of field data and modeling, Environment and Natural Resources, Government of Northwest Territories, Yellowknife, Northwest Territories, Canada, 2020, Manuscript Report 287.Search in Google Scholar

[60] Henderson J., Loe J., The Prospects and Challenges for Arctic Oil Development, The Oxford Institute for Energy Studies, 2014, PAPER WPM 54.10.26889/9781784670153Search in Google Scholar

[61] Gunn A., Johnson C.J., Nishi J.S., Daniel C.J., Carlson M., Russell D.E., Adamczewski J.Z., Addressing Cumulative Effects in the Canadian Central Arctic – Understanding the Impacts of Human Activities on Barren-ground Caribou, Chapter 8, In Krausman P.R., Harris L.K., eds., Cumulative Effects in Wildlife Management: A Critical Aspect of Impact Mitigation. Taylor and Francis, 2011, 274pp.Search in Google Scholar

[62] Plante S., Dussault C., Hénault R.J, Garel M., Côté S.D., 2020. Untangling effects of human disturbance and natural factors on mortality risk of migratory caribou, Frontiers in Ecology and Evolution, 2020, 8, 154, DOI: 10.3389/fevo.2020.00154.10.3389/fevo.2020.00154Search in Google Scholar

[63] Russell D., Gunn A., White R., 2021. A decision support tool for assessing cumulative effects on an Arctic migratory tundra caribou population, Ecology and Society, 2021, 26 (1), 4, DOI: 10.5751/ES-12105-260104.10.5751/ES-12105-260104Search in Google Scholar

[64] Joly K., Nellemann C., Vistnes I., A reevaluation of caribou distribution near an oilfield road on Alaska’s North Slope, Wildlife Society Bulletin, 2006, 34 (3), 866-869. DOI: 10.2193/0091-7648(2006)34[866:AROCDN]2.0.CO;2.Search in Google Scholar

[65] Nellemann C., Cameron R.D., Cumulative impacts of an evolving oilfield complex on the distribution of calving caribou, Canadian Journal of Zoology, 1998, 76, 1425–1430. DOI: 10.1139/z98-078.10.1139/z98-078Search in Google Scholar

[66] Vistnes I., Nellemann C., The matter of spatial and temporal scales: a review of reindeer and caribou response to human activity. Polar Biology, 2008, 31, 399-407.10.1007/s00300-007-0377-9Search in Google Scholar

[67] Boulanger J., Poole K.G, Gunn A., Adamczewski J., Wierzchowski J., Estimation of trends in zone of influence of mine sites on barren-ground caribou populations in the Northwest Territories, Canada, using new methods, Wildlife Biology, 2021, 1, wlb.00719, DOI: 10.2981/wlb.00719.10.2981/wlb.00719Search in Google Scholar

[68] Panzacchi M., Van Moorter B., Strand O., Loe L.E., Reimers E., Searching for the fundamental niche using individual-based habitat selection modelling across populations, Ecography, 2015, 38 (7), DOI: 10.1111/ecog.01075.10.1111/ecog.01075Search in Google Scholar

[69] Baltensperger A.P., Joly K., Using seasonal landscape models to predict space use and migratory patterns of an arctic ungulate. Movement Ecology, 2019, 7 (18), DOI: 10.1186/s40462-019-0162-8.10.1186/s40462-019-0162-8Search in Google Scholar PubMed PubMed Central

[70] Mallory C.D., Boyce, M.S., Observed and predicted effects of climate change on Arctic caribou and reindeer, Environmental Reviews, 2018, 26, 13-25, DOI: 10.1139/er-2017-0032.10.1139/er-2017-0032Search in Google Scholar

[71] Miller F.L., Barry S.J., Calvert W.A., Sea-ice crossings by caribou in the south-central Canadian Arctic Archipelago and their ecological importance. Rangifer Special Issue, 2005, 16, 77–88.10.7557/2.25.4.1773Search in Google Scholar

[72] Ricca M.A., Weckerly F.W., Duarte A., Williams J.C., Range expansion of nonindigenous caribou in the Aleutian archipelago of Alaska, Biological Invasions, 2012, 14, 1779–1784, DOI: 10.1007/s10530-012-0195-z.10.1007/s10530-012-0195-zSearch in Google Scholar

[73] Jenkins D.A, Lecomte N., Schaefer J.A, Olsen S.M., Swingedouw D., Côté S.D., Pellissier L., Yannic G., Loss of connectivity among island-dwelling Peary caribou following sea ice decline, Biology Letters, 2016, 12, 20160235, DOI: 10.1098/rsbl.2016.0235.10.1098/rsbl.2016.0235Search in Google Scholar PubMed PubMed Central

[74] Joly K., 2012. Sea ice crossing by migrating caribou, Rangifer tarandus, in northwest Alaska. Canadian Field-Naturalist 2012, 126 (3), 217-220, DOI: 10.22621/cfn.v126i3.1363.10.22621/cfn.v126i3.1363Search in Google Scholar

[75] Peeters B., Le Moullec M., Raeymaekers J.A.M., Marquez J.F., Røed K.H., Pedersen Å.Ø., Veiberg V., Loe L.E., Hansen B.B., Sea ice loss increases genetic isolation in a high Arctic ungulate metapopulation, Global Change Biology, 2020, 26 (4), 2028-2041, DOI: 10.1111/gcb.14965.10.1111/gcb.14965Search in Google Scholar PubMed

[76] Poole K.G., Gunn A., Patterson B.R., Dumond, M., Sea ice and migration of the Dolphin and Union caribou herd in the Canadian Arctic: an uncertain future, Arctic, 2010, 63, 414-428. https://www.jstor.org/stable/20799622.10.14430/arctic3331Search in Google Scholar

[77] Miller F.L., Gunn, A., Observations of Barren-Ground Caribou Travelling on Thin Ice during Autumn Migration, Arctic, 1986, 39 (1), 85-88.10.14430/arctic2052Search in Google Scholar

[78] Mallory C.D., Williamson S.N., Campbell M.W., Boyce, M.S., Response of barren-ground caribou to advancing spring phenology, Oecologia, 2020, 192. 837-852, DOI: 10.1007/s00442-020-04604-0.10.1007/s00442-020-04604-0Search in Google Scholar PubMed

[79] Leclerc M., Leblond M., Le Corre M., Dussault C., Côté, S.D., Determinants of migration trajectory and movement rate in a long-distance terrestrial mammal. Journal of Mammalogy, 2021, 102 (5), 1342-1352, DOI: 10.1093/jmammal/gyab081.10.1093/jmammal/gyab081Search in Google Scholar

[80] Cameron M.D., Eisaguirre, J.M., Breed, G.A., Joly K., Kielland, K., Application of a mechanistic movement model to identify autumn migration cues for Arctic caribou, Movement Ecology, in press.Search in Google Scholar

[81] Rivrud I.M., Meisingset E.L., Loe L. E., Mysterud A., Future suitability of habitat in a migratory ungulate under climate change, Proceedings of the Royal Society B., 2019, 286, 2019044220190442, DOI: 10.1098/rspb.2019.0442.10.1098/rspb.2019.0442Search in Google Scholar PubMed PubMed Central

[82] Park, H., Walsh J.E., Kim Y., Nakai T., Ohata T., The role of declining Arctic sea ice in recent decreasing terrestrial Arctic snow depths, Polar Science, 2013, 7 (2), 174-187, DOI: 10.1016/j.polar.2021.10.002.Search in Google Scholar

[83] Bailey H., Hubbard A., Klein E.S., Mustonen K.-R., Akers P.D., Marttila H., Welker, J.M., Arctic sea-ice loss fuels extreme European snowfall, Nature Geoscience, 2021, 14, 283–288, DOI: 10.1038/s41561-021-00719-y.10.1038/s41561-021-00719-ySearch in Google Scholar

[84] Fancy, S.G., White, R.G., Energy expenditures for locomotion by barren-ground caribou, Canadian Journal of Zoology, 1987, 65 (1), 122-128, DOI: 10.1139/z87-018.10.1139/z87-018Search in Google Scholar

[85] Forbes B.C., Kumpula T., Meschtyb N., Laptander R., Macias-Fauria M., Zetterberg P., Verdonen M., Skarin A., Kim K.-Y., Boisvert L.N., Stroeve J.C., Bartsch A., Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia, Biology Letters, 2016, 12, 20160466, DOI: 10.1098/rsbl.2016.0466.10.1098/rsbl.2016.0466Search in Google Scholar PubMed PubMed Central

[86] Bieniek P.A., Bhatt U.S., Walsh J.E., Lader R., Griffith B., Roach J.K., Thoman, R.L., (2018). Assessment of Alaska Rain-on-Snow Events Using Dynamical Downscaling, Journal of Applied Meteorology and Climatology, 2018, 57 (8), 1847-1863, DOI: 10.1175/JAMC-D-17-0276.110.1175/JAMC-D-17-0276.1Search in Google Scholar

[87] Hansen B.B., Pedersen Å.Ø., Peeters B., Le Moullec M., Albon S.D.; Herfindal I., Sæther B.-E., Grøtan V., Aanes, R., Spatial heterogeneity in climate change effects decouples the long-term dynamics of wild reindeer populations in the high Arctic, Global Change Biology, 2019, 25 (11), 3656-3668, DOI: 10.1111/gcb.14761.10.1111/gcb.14761Search in Google Scholar PubMed PubMed Central

[88] Whitten K.R., Mauer F.J., Garner G.W., Russell D.E., Fall and Winter Movements, Distribution, and Annual Mortality Patterns of the Porcupine Caribou Herd, 1984-1985. ANWR Progress Report, 1986, Number FY86-21.Search in Google Scholar

[89] Rivrud I.M., Bischof R., Meisingset E.L., Zimmermann B., Loe L.E., Mysterud A., Leave before it’s too late : anthropogenic and environmental triggers of autumn migration in a hunted ungulate population. Ecology, 2016, 97, 1058–1068.10.1890/15-1191.1Search in Google Scholar PubMed

[90] Swanson D.K., Sousanes P.J., Hill K., (2021) Increased mean annual temperatures in 2014–2019 indicate permafrost thaw in Alaskan national parks, Arctic, Antarctic, and Alpine Research, 2021, 53 (1), 1-19, DOI: 10.1080/15230430.2020.1859435.10.1080/15230430.2020.1859435Search in Google Scholar

[91] Pettorelli N., Pelletier F., von Hardenberg A., Festa-Bianchet M., Côté S.D., Early onset of vegetation growth vs. rapid green-up: impacts on juvenile mountain ungulates. Ecology, 2007, 88, 381-390.10.1890/06-0875Search in Google Scholar PubMed

[92] Gustine D., Barboza P., Adams L., Griffith B., Cameron R., Whitten K., Advancing the match-mismatch framework for large herbivores in the Arctic: Evaluating the evidence for a trophic mismatch in caribou. PLoS ONE, 2017, 12 (2), e0171807, DOI: 10.1371/journal.pone.0171807.10.1371/journal.pone.0171807Search in Google Scholar PubMed PubMed Central

[93] Myers-Smith I.H., et al., Complexity revealed in the greening of the Arctic, Nature Climate Change, 2020, 10, 106–117, DOI: 10.1038/s41558-019-0688-1.10.1038/s41558-019-0688-1Search in Google Scholar

[94] Loe L.E., et al., The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer, Global Change Biology, 2021, 27 (5), 993-1002, DOI: 10.1111/gcb.15458.10.1111/gcb.15458Search in Google Scholar PubMed

[95] Lemay E., Côté S.D., Tremblay J.-P., 2021. How shrub expansion in the Arctic affect food resources of caribou through snow retention and shading?, Écoscience, DOI: 10.1080/11956860.2021.1917859.10.1080/11956860.2021.1917859Search in Google Scholar

[96] Zamin T.J., Côté S.D., Tremblay J.-P., Grogan P., Experimental warming alters migratory caribou forage quality, Ecological Applications, 2017, 27(7), 2017, 2061–2073.10.1002/eap.1590Search in Google Scholar PubMed

[97] Saucier V., Côté S.D., Champagne E., Tremblay J.-P., 2019. Combined effects of simulated browsing, warming and nutrient addition on forage availability for migratory caribou, Polar Biology, 2019, 42, 1561-1570.10.1007/s00300-019-02543-ySearch in Google Scholar

[98] Post E., Forchhammer M.C., Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch, Philosophical Transactions of the Royal Society B, 2008, 3632367–2373, DOI: 10.1098/rstb.2007.2207.10.1098/rstb.2007.2207Search in Google Scholar PubMed PubMed Central

[99] Robinson R.A., et al., Travelling through a warming world: climate change and migratory species, Endangered Species Research, 2009, 7, 87-99, DOI: 10.3354/esr00095.10.3354/esr00095Search in Google Scholar

[100] Taillon J., Barboza P.S., Côté S.D., Nitrogen allocation to offspring and milk production in a capital breeder, Ecology, 2013, 94, 1815-1827.10.1890/12-1424.1Search in Google Scholar PubMed

[101] Barboza P.S., Shively R.D., Gustine D.D., Addison J.A., Winter Is Coming: Conserving Body Protein in Female Reindeer, Caribou, and Muskoxen, Frontiers in Ecology and Evolution, 2020, 8, DOI: 10.3389/fevo.2020.00150.10.3389/fevo.2020.00150Search in Google Scholar

[102] Taillon J., Festa-Bianchet M., Côté S.D., 2012. Shifting targets in the tundra: protection of migratory caribou calving grounds must account for spatial changes over time, Biological Conservation, 2012, 147, 163-173.10.1016/j.biocon.2011.12.027Search in Google Scholar

[103] Fullman T.J., Joly K., Ackerman, A., Effects of environmental features and sport hunting on caribou migration in northwestern Alaska. Movement Ecology, 2017, 5 (4), 1-11, DOI 10.1186/s40462-017-0095-z.10.1186/s40462-017-0095-zSearch in Google Scholar PubMed PubMed Central

[104] Epstein H.E., Myers-Smith I., Walker D.A., Recent dynamics of arctic and sub-arctic vegetation, Environmental Research Letters, 2013, 8, 015040, DOI: 10.1088/1748-9326/8/1/015040.10.1088/1748-9326/8/1/015040Search in Google Scholar

[105] Gurarie, E., Thompson P., Kelly A.P., Larter N.C., Fagan W.F., Joly K., For everything there is a season: estimating periodic hazard functions with the cyclomort R package, Methods in Ecology and Evolution, 2020, 11 (1), 129-138, DOI: 10.1111/2041-210X.13305.10.1111/2041-210X.13305Search in Google Scholar

[106] DeCesare N.J., Hebblewhite M., Robinson H.S., Musiani M., Endangered, apparently: the role of apparent competition in endangered species conservation, Animal Conservation, 2010, 13, 353–362, DOI: :10.1111/j.1469-1795.2009.00328.x.10.1111/j.1469-1795.2009.00328.xSearch in Google Scholar

[107] Klein D.R., Tundra ranges north of the boreal forest. Journal of Range Management, 1970, 23(1), 8–14. DOI: 10.2307/3896000.10.2307/3896000Search in Google Scholar

[108] Hu F.S., Higuera P.E., Duffy P., Chipman M.L., Rocha A.V., Young A.M., Kelly R., Dietze M.C., Arctic tundra fires: natural variability and responses to climate change, Frontiers in Ecology and the Environment, 2015, 13(7): 369–377, DOI:10.1890/150063.10.1890/150063Search in Google Scholar

[109] Box J.E., et al., Key indicators of Arctic climate change: 1971–2017, Environ. Res. Lett., 2019, 14 (4), 045010, DOI: 10.1088/1748-9326/aafc1b.10.1088/1748-9326/aafc1bSearch in Google Scholar

[110] Payette S., Boudreau S., Morneau C., Pitre N., Long-term interactions between migratory caribou, wildfires and Nunavik hunters inferred from tree rings, Ambio, 2004, 33 (8), 482-486.10.1579/0044-7447-33.8.482Search in Google Scholar PubMed

[111] Joly K., Duffy P.A, Rupp T.S., Simulating the effects of climate change on fire regimes in Arctic biomes: implications for caribou and moose habitat. Ecosphere, 2012, 3 (5), 1-18. Article 36, DOI: 10.1890/ES12-00012.1.10.1890/ES12-00012.1Search in Google Scholar

[112] Gustine D.D., Brinkman T.J., Lindgren M.A., Schmidt J.I., Rupp T.S., Adams, L.G., Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic, PLoS ONE, 2014, 9 (7), e100588. doi:10.1371/journal. pone.0100588.Search in Google Scholar

[113] Folstad I., Nilssen A. C., Halvorsen O., Andersen J., Parasite avoidance: the cause of post-calving migrations in Rangifer? Canadian Journal of Zoology, 1991, 69, 2423-2429.10.1139/z91-340Search in Google Scholar

[114] Teitelbaum C.S., Huang S., Hall R.J., Altizer S., Migratory behaviour predicts greater parasite diversity in ungulates. Proceedings of the Royal Society B, 2018, 285, 20180089, DOI: 10.1098/rspb.2018.0089.10.1098/rspb.2018.0089Search in Google Scholar PubMed PubMed Central

[115] Peacock S.J., Krkošekc M., Lewis M.A., Molnár P.K., A unifying framework for the transient parasite dynamics of migratory hosts, Proceedings of the National Academy of Sciences, 117 (20), 10897–10903, DOI: 10.1073/pnas.1908777117.10.1073/pnas.1908777117Search in Google Scholar PubMed PubMed Central

[116] Toupin B., Huot J., Manseau M., Effect of insect harassment on the behaviour of the Rivière George caribou, Arctic, 1996, 49, 375-382.10.14430/arctic1213Search in Google Scholar

[117] Mysterud A., et al., The demographic pattern of infection with chronic wasting disease in reindeer at an early epidemic stage. Ecosphere, 2019, 10, e02931.10.1002/ecs2.2931Search in Google Scholar

[118] Mysterud A., Rolandsen, C.M., A reindeer cull to prevent chronic wasting disease in Europe. Nature Ecology and Evolution, 2018, 2, 1343–1345.10.1038/s41559-018-0616-1Search in Google Scholar PubMed

[119] Beyer H.L, Gurarie E., Borger L., Panzacchi M., Basille M., Herfindal I., Van Moorter B., Lele S.R., Matthiopoulos, J., ‘You shall not pass!’: quantifying barrier permeability and proximity avoidance by animals, Journal of Animal Ecology, 2016, 85, 43–53, DOI: 10.1111/1365-2656.12275.10.1111/1365-2656.12275Search in Google Scholar PubMed

[120] U.S. Public Law 96-96, Cape Krusenstern National Monument land exchange between United States and NANA Regional Corporation, Inc., Exhibit B, Caribou Monitoring Program, 1985.Search in Google Scholar

[121] Boulanger J., Kite R., Campbell M., Shaw J., Lee D.S., Analysis of caribou movements relative to the Meadowbank Mine and roads during spring migration. Government of Nunavut, Department of Environment, Technical Report Series, 2020, No:01-2020, 31 July 2020.Search in Google Scholar

[122] Tłıc̨hǫ Government, Cumulative Impacts on the Bathurst Caribou Herd: A Tłıchofl Traditional Knowledge Study. Dedats’eetsaa, Tłı̨chǫ Research and Training Institute, 2013, Behchokǫ̀, Northwest Territories, Canada.Search in Google Scholar

[123] Supreme Court of British Columbia, Yahey vs British Columbia, 2021, https://www.canlii.org/en/bc/bcsc/doc/2021/2021bcsc1287/2021bcsc1287.html.Search in Google Scholar

[124] Guettabi M., Greenberg J., Little J., Joly K., Evaluating potential economic effects of an industrial road on subsistence in north-central Alaska. Arctic, 2016, 69 (3), 305-317, DOI: 10.14430/arctic4583.10.14430/arctic4583Search in Google Scholar

[125] Joly, K., Bente P., Dau J., 2007, Response of overwintering caribou to burned habitat in northwest Alaska, Arctic, 2007, 60 (4), 401-410.10.14430/arctic197Search in Google Scholar

Received: 2021-07-15
Accepted: 2021-10-05
Published Online: 2021-12-22

© 2021 Kyle Joly et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded on 8.5.2024 from https://www.degruyter.com/document/doi/10.1515/ami-2020-0110/html?lang=en
Scroll to top button