Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,804)

Search Parameters:
Journal = Information

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 5552 KiB  
Article
Addressing Data Scarcity in the Medical Domain: A GPT-Based Approach for Synthetic Data Generation and Feature Extraction
by Fahim Sufi
Information 2024, 15(5), 264; https://doi.org/10.3390/info15050264 - 06 May 2024
Viewed by 134
Abstract
This research confronts the persistent challenge of data scarcity in medical machine learning by introducing a pioneering methodology that harnesses the capabilities of Generative Pre-trained Transformers (GPT). In response to the limitations posed by a dearth of labeled medical data, our approach involves [...] Read more.
This research confronts the persistent challenge of data scarcity in medical machine learning by introducing a pioneering methodology that harnesses the capabilities of Generative Pre-trained Transformers (GPT). In response to the limitations posed by a dearth of labeled medical data, our approach involves the synthetic generation of comprehensive patient discharge messages, setting a new standard in the field with GPT autonomously generating 20 fields. Through a meticulous review of the existing literature, we systematically explore GPT’s aptitude for synthetic data generation and feature extraction, providing a robust foundation for subsequent phases of the research. The empirical demonstration showcases the transformative potential of our proposed solution, presenting over 70 patient discharge messages with synthetically generated fields, including severity and chances of hospital re-admission with justification. Moreover, the data had been deployed in a mobile solution where regression algorithms autonomously identified the correlated factors for ascertaining the severity of patients’ conditions. This study not only establishes a novel and comprehensive methodology but also contributes significantly to medical machine learning, presenting the most extensive patient discharge summaries reported in the literature. The results underscore the efficacy of GPT in overcoming data scarcity challenges and pave the way for future research to refine and expand the application of GPT in diverse medical contexts. Full article
(This article belongs to the Special Issue Information Systems in Healthcare)
25 pages, 397 KiB  
Review
Cybercrime Intention Recognition: A Systematic Literature Review
by Yidnekachew Worku Kassa, Joshua Isaac James and Elefelious Getachew Belay
Information 2024, 15(5), 263; https://doi.org/10.3390/info15050263 - 05 May 2024
Viewed by 259
Abstract
In this systematic literature review, we delve into the realm of intention recognition within the context of digital forensics and cybercrime. The rise of cybercrime has become a major concern for individuals, organizations, and governments worldwide. Digital forensics is a field that deals [...] Read more.
In this systematic literature review, we delve into the realm of intention recognition within the context of digital forensics and cybercrime. The rise of cybercrime has become a major concern for individuals, organizations, and governments worldwide. Digital forensics is a field that deals with the investigation and analysis of digital evidence in order to identify, preserve, and analyze information that can be used as evidence in a court of law. Intention recognition is a subfield of artificial intelligence that deals with the identification of agents’ intentions based on their actions and change of states. In the context of cybercrime, intention recognition can be used to identify the intentions of cybercriminals and even to predict their future actions. Employing a PRISMA systematic review approach, we curated research articles from reputable journals and categorized them into three distinct modeling approaches: logic-based, classical machine learning-based, and deep learning-based. Notably, intention recognition has transcended its historical confinement to network security, now addressing critical challenges across various subdomains, including social engineering attacks, artificial intelligence black box vulnerabilities, and physical security. While deep learning emerges as the dominant paradigm, its inherent lack of transparency poses a challenge in the digital forensics landscape. However, it is imperative that models developed for digital forensics possess intrinsic attributes of explainability and logical coherence, thereby fostering judicial confidence, mitigating biases, and upholding accountability for their determinations. To this end, we advocate for hybrid solutions that blend explainability, reasonableness, efficiency, and accuracy. Furthermore, we propose the creation of a taxonomy to precisely define intention recognition, paving the way for future advancements in this pivotal field. Full article
(This article belongs to the Special Issue Digital Forensic Investigation and Incident Response)
Show Figures

Figure 1

21 pages, 1341 KiB  
Article
Novel Ransomware Detection Exploiting Uncertainty and Calibration Quality Measures Using Deep Learning
by Mazen Gazzan and Frederick T. Sheldon
Information 2024, 15(5), 262; https://doi.org/10.3390/info15050262 - 05 May 2024
Viewed by 217
Abstract
Ransomware poses a significant threat by encrypting files or systems demanding a ransom be paid. Early detection is essential to mitigate its impact. This paper presents an Uncertainty-Aware Dynamic Early Stopping (UA-DES) technique for optimizing Deep Belief Networks (DBNs) in ransomware detection. UA-DES [...] Read more.
Ransomware poses a significant threat by encrypting files or systems demanding a ransom be paid. Early detection is essential to mitigate its impact. This paper presents an Uncertainty-Aware Dynamic Early Stopping (UA-DES) technique for optimizing Deep Belief Networks (DBNs) in ransomware detection. UA-DES leverages Bayesian methods, dropout techniques, and an active learning framework to dynamically adjust the number of epochs during the training of the detection model, preventing overfitting while enhancing model accuracy and reliability. Our solution takes a set of Application Programming Interfaces (APIs), representing ransomware behavior as input we call “UA-DES-DBN.” The method incorporates uncertainty and calibration quality measures, optimizing the training process for better more accurate ransomware detection. Experiments demonstrate the effectiveness of UA-DES-DBN compared to more conventional models. The proposed model improved accuracy from 94% to 98% across various input sizes, surpassing other models. UA-DES-DBN also decreased the false positive rate from 0.18 to 0.10, making it more useful in real-world cybersecurity applications. Full article
21 pages, 1814 KiB  
Article
The Impact of Immersive Virtual Reality on Knowledge Acquisition and Adolescent Perceptions in Cultural Education
by Athanasios Christopoulos, Maria Styliou, Nikolaos Ntalas and Chrysostomos Stylios
Information 2024, 15(5), 261; https://doi.org/10.3390/info15050261 - 03 May 2024
Viewed by 326
Abstract
Understanding local history is fundamental to fostering a comprehensive global viewpoint. As technological advances shape our pedagogical tools, Virtual Reality (VR) stands out for its potential educational impact. Though its promise in educational settings is widely acknowledged, especially in science, technology, engineering and [...] Read more.
Understanding local history is fundamental to fostering a comprehensive global viewpoint. As technological advances shape our pedagogical tools, Virtual Reality (VR) stands out for its potential educational impact. Though its promise in educational settings is widely acknowledged, especially in science, technology, engineering and mathematics (STEM) fields, there is a noticeable decrease in research exploring VR’s efficacy in arts. The present study examines the effects of VR-mediated interventions on cultural education. In greater detail, secondary school adolescents (N = 52) embarked on a journey into local history through an immersive 360° VR experience. As part of our research approach, we conducted pre- and post-intervention assessments to gauge participants’ grasp of the content and further distributed psychometric instruments to evaluate their reception of VR as an instructional approach. The analysis indicates that VR’s immersive elements enhance knowledge acquisition but the impact is modulated by the complexity of the subject matter. Additionally, the study reveals that a tailored, context-sensitive, instructional design is paramount for optimising learning outcomes and mitigating educational inequities. This work challenges the “one-size-fits-all” approach to educational VR, advocating for a more targeted instructional approach. Consequently, it emphasises the need for educators and VR developers to collaboratively tailor interventions that are both culturally and contextually relevant. Full article
33 pages, 48967 KiB  
Article
Medical Support Vehicle Location and Deployment at Mass Casualty Incidents
by Miguel Medina-Perez, Giovanni Guzmán, Magdalena Saldana-Perez and Valeria Karina Legaria-Santiago
Information 2024, 15(5), 260; https://doi.org/10.3390/info15050260 - 03 May 2024
Viewed by 240
Abstract
Anticipating and planning for the urgent response to large-scale disasters is critical to increase the probability of survival at these events. These incidents present various challenges that complicate the response, such as unfavorable weather conditions, difficulties in accessing affected areas, and the geographical [...] Read more.
Anticipating and planning for the urgent response to large-scale disasters is critical to increase the probability of survival at these events. These incidents present various challenges that complicate the response, such as unfavorable weather conditions, difficulties in accessing affected areas, and the geographical spread of the victims. Furthermore, local socioeconomic factors, such as inadequate prevention education, limited disaster resources, and insufficient coordination between public and private emergency services, can complicate these situations. In large-scale emergencies, multiple demand points (DPs) are generally observed, which requires efforts to coordinate the strategic allocation of human and material resources in different geographical areas. Therefore, the precise management of these resources based on the specific needs of each area becomes fundamental. To address these complexities, this paper proposes a methodology that models these scenarios as a multi-objective optimization problem, focusing on the location-allocation problem of resources in Mass Casualty Incidents (MCIs). The proposed case study is Mexico City in a earthquake post-disaster scenario, using voluntary geographic information, open government data, and historical data from the 19 September 2017 earthquake. It is assumed that the resources that require optimal location and allocation are ambulances, which focus on medical issues that affect the survival of victims. The designed solution involves the use of a metaheuristic optimization technique, along with a parameter tuning technique, to find configurations that perform at different instances of the problem, i.e., different hypothetical scenarios that can be used as a reference for future possible situations. Finally, the objective is to present the different solutions graphically, accompanied by relevant information to facilitate the decision-making process of the authorities responsible for the practical implementation of these solutions. Full article
(This article belongs to the Special Issue Telematics, GIS and Artificial Intelligence)
Show Figures

Figure 1

21 pages, 6891 KiB  
Article
Enhanced Fault Detection in Bearings Using Machine Learning and Raw Accelerometer Data: A Case Study Using the Case Western Reserve University Dataset
by Krish Kumar Raj, Shahil Kumar, Rahul Ranjeev Kumar and Mauro Andriollo
Information 2024, 15(5), 259; https://doi.org/10.3390/info15050259 - 02 May 2024
Viewed by 362
Abstract
This study introduces a novel approach for fault classification in bearing components utilizing raw accelerometer data. By employing various neural network models, including deep learning architectures, we bypass the traditional preprocessing and feature-extraction stages, streamlining the classification process. Utilizing the Case Western Reserve [...] Read more.
This study introduces a novel approach for fault classification in bearing components utilizing raw accelerometer data. By employing various neural network models, including deep learning architectures, we bypass the traditional preprocessing and feature-extraction stages, streamlining the classification process. Utilizing the Case Western Reserve University (CWRU) bearing dataset, our methodology demonstrates remarkable accuracy, particularly in deep learning networks such as the three variant convolutional neural networks (CNNs), achieving above 98% accuracy across various loading levels, establishing a new benchmark in fault-detection efficiency. Notably, data exploration through principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) provided valuable insights into feature relationships and patterns, aiding in effective fault detection. This research not only proves the efficacy of neural network classifiers in handling raw data but also opens avenues for more straightforward yet effective diagnostic methods in machinery health monitoring. These findings suggest significant potential for real-world applications, offering a faster yet reliable alternative to conventional fault-classification techniques. Full article
(This article belongs to the Section Information Applications)
Show Figures

Figure 1

22 pages, 931 KiB  
Article
A Hybrid MCDM Approach Using the BWM and the TOPSIS for a Financial Performance-Based Evaluation of Saudi Stocks
by Abdulrahman T. Alsanousi, Ammar Y. Alqahtani, Anas A. Makki and Majed A. Baghdadi
Information 2024, 15(5), 258; https://doi.org/10.3390/info15050258 - 02 May 2024
Viewed by 524
Abstract
This study presents a hybrid multicriteria decision-making approach for evaluating stocks in the Saudi Stock Market. The objective is to provide investors and stakeholders with a robust evaluation methodology to inform their investment decisions. With a market value of USD 2.89 trillion dollars [...] Read more.
This study presents a hybrid multicriteria decision-making approach for evaluating stocks in the Saudi Stock Market. The objective is to provide investors and stakeholders with a robust evaluation methodology to inform their investment decisions. With a market value of USD 2.89 trillion dollars in September 2022, the Saudi Stock Market is of significant importance for the country’s economy. However, navigating the complexities of stock market performance poses investment challenges. This study employs the best–worst method and the technique for order preference by similarity to identify an ideal solution to address these challenges. Utilizing data from the Saudi Stock Market (Tadawul), this study evaluates stock performance based on financial criteria, including return on equity, return on assets, net profit margin, and asset turnover. The findings reveal valuable insights, particularly in the banking sector, which exhibited the highest net profit margin ratios among sectors. The hybrid multicriteria decision-making-based approach enhances investment decisions. This research provides a foundation for future investigations, facilitating a deeper exploration and analysis of additional aspects of the Saudi Stock Market’s performance. The developed methodology and findings have implications for investors and stakeholders, aiding their investment decisions and maximizing returns. Full article
(This article belongs to the Special Issue New Applications in Multiple Criteria Decision Analysis II)
Show Figures

Figure 1

21 pages, 11491 KiB  
Article
FIWARE-Compatible Smart Data Models for Satellite Imagery and Flood Risk Assessment to Enhance Data Management
by Ioannis-Omiros Kouloglou, Gerasimos Antzoulatos, Georgios Vosinakis, Francesca Lombardo, Alberto Abella, Marios Bakratsas, Anastasia Moumtzidou, Evangelos Maltezos, Ilias Gialampoukidis, Eleftherios Ouzounoglou, Stefanos Vrochidis, Angelos Amditis, Ioannis Kompatsiaris and Michele Ferri
Information 2024, 15(5), 257; https://doi.org/10.3390/info15050257 - 02 May 2024
Viewed by 266
Abstract
The increasing rate of adoption of innovative technological achievements along with the penetration of the Next Generation Internet (NGI) technologies and Artificial Intelligence (AI) in the water sector are leading to a shift to a Water-Smart Society. New challenges have emerged in terms [...] Read more.
The increasing rate of adoption of innovative technological achievements along with the penetration of the Next Generation Internet (NGI) technologies and Artificial Intelligence (AI) in the water sector are leading to a shift to a Water-Smart Society. New challenges have emerged in terms of data interoperability, sharing, and trustworthiness due to the rapidly increasing volume of heterogeneous data generated by multiple technologies. Hence, there is a need for efficient harmonization and smart modeling of the data to foster advanced AI analytical processes, which will lead to efficient water data management. The main objective of this work is to propose two Smart Data Models focusing on the modeling of the satellite imagery data and the flood risk assessment processes. The utilization of those models reinforces the fusion and homogenization of diverse information and data, facilitating the adoption of AI technologies for flood mapping and monitoring. Furthermore, a holistic framework is developed and evaluated via qualitative and quantitative performance indicators revealing the efficacy of the proposed models concerning the usage of the models in real cases. The framework is based on the well-known and compatible technologies on NGSI-LD standards which are customized and applicable easily to support the water data management processes effectively. Full article
Show Figures

Figure 1

16 pages, 906 KiB  
Article
Epileptic Seizure Detection from Decomposed EEG Signal through 1D and 2D Feature Representation and Convolutional Neural Network
by Shupta Das, Suraiya Akter Mumu, M. A. H. Akhand, Abdus Salam and Md Abdus Samad Kamal
Information 2024, 15(5), 256; https://doi.org/10.3390/info15050256 - 02 May 2024
Viewed by 274
Abstract
Electroencephalogram (EEG) has emerged as the most favorable source for recognizing brain disorders like epileptic seizure (ES) using deep learning (DL) methods. This study investigated the well-performed EEG-based ES detection method by decomposing EEG signals. Specifically, empirical mode decomposition (EMD) decomposes EEG signals [...] Read more.
Electroencephalogram (EEG) has emerged as the most favorable source for recognizing brain disorders like epileptic seizure (ES) using deep learning (DL) methods. This study investigated the well-performed EEG-based ES detection method by decomposing EEG signals. Specifically, empirical mode decomposition (EMD) decomposes EEG signals into six intrinsic mode functions (IMFs). Three distinct features, namely, fluctuation index, variance, and ellipse area of the second order difference plot (SODP), were extracted from each of the IMFs. The feature values from all EEG channels were arranged in two composite feature forms: a 1D (i.e., unidimensional) form and a 2D image-like form. For ES recognition, the convolutional neural network (CNN), the most prominent DL model for 2D input, was considered for the 2D feature form, and a 1D version of CNN was employed for the 1D feature form. The experiment was conducted on a benchmark CHB-MIT dataset as well as a dataset prepared from the EEG signals of ES patients from Prince Hospital Khulna (PHK), Bangladesh. The 2D feature-based CNN model outperformed the other 1D feature-based models, showing an accuracy of 99.78% for CHB-MIT and 95.26% for PHK. Furthermore, the cross-dataset evaluations also showed favorable outcomes. Therefore, the proposed method with 2D composite feature form can be a promising ES detection method. Full article
(This article belongs to the Special Issue Deep Learning for Image, Video and Signal Processing)
17 pages, 2692 KiB  
Article
Proactive Agent Behaviour in Dynamic Distributed Constraint Optimisation Problems
by Brighter Agyemang, Fenghui Ren and Jun Yan
Information 2024, 15(5), 255; https://doi.org/10.3390/info15050255 - 02 May 2024
Viewed by 319
Abstract
In multi-agent systems, the Dynamic Distributed Constraint Optimisation Problem (D-DCOP) framework is pivotal, allowing for the decomposition of global objectives into agent constraints. Proactive agent behaviour is crucial in such systems, enabling agents to anticipate future changes and adapt accordingly. Existing approaches, like [...] Read more.
In multi-agent systems, the Dynamic Distributed Constraint Optimisation Problem (D-DCOP) framework is pivotal, allowing for the decomposition of global objectives into agent constraints. Proactive agent behaviour is crucial in such systems, enabling agents to anticipate future changes and adapt accordingly. Existing approaches, like Proactive Dynamic DCOP (PD-DCOP) algorithms, often necessitate a predefined environment model. We address the problem of enabling proactive agent behaviour in D-DCOPs where the dynamics model of the environment is unknown. Specifically, we propose an approach where agents learn local autoregressive models from observations, predicting future states to inform decision-making. To achieve this, we present a temporal experience-sharing message-passing algorithm that leverages dynamic agent connections and a distance metric to collate training data. Our approach outperformed baseline methods in a search-and-extinguish task using the RoboCup Rescue Simulator, achieving better total building damage. The experimental results align with prior work on the significance of decision-switching costs and demonstrate improved performance when the switching cost is combined with a learned model. Full article
(This article belongs to the Special Issue Intelligent Agent and Multi-Agent System)
Show Figures

Figure 1

17 pages, 4720 KiB  
Article
MortalityMinder: Visualization and AI Interpretations of Social Determinants of Premature Mortality in the United States
by Karan Bhanot, John S. Erickson and Kristin P. Bennett
Information 2024, 15(5), 254; https://doi.org/10.3390/info15050254 - 30 Apr 2024
Viewed by 322
Abstract
MortalityMinder enables healthcare researchers, providers, payers, and policy makers to gain actionable insights into where and why premature mortality rates due to all causes, cancer, cardiovascular disease, and deaths of despair rose between 2000 and 2017 for adults aged 25–64. MortalityMinder is designed [...] Read more.
MortalityMinder enables healthcare researchers, providers, payers, and policy makers to gain actionable insights into where and why premature mortality rates due to all causes, cancer, cardiovascular disease, and deaths of despair rose between 2000 and 2017 for adults aged 25–64. MortalityMinder is designed as an open-source web-based visualization tool that enables interactive analysis and exploration of social, economic, and geographic factors associated with mortality at the county level. We provide case studies to illustrate how MortalityMinder finds interesting relationships between health determinants and deaths of despair. We also demonstrate how GPT-4 can help translate statistical results from MortalityMinder into actionable insights to improve population health. When combined with MortalityMinder results, GPT-4 provides hypotheses on why socio-economic risk factors are associated with mortality, how they might be causal, and what actions could be taken related to the risk factors to improve outcomes with supporting citations. We find that GPT-4 provided plausible and insightful answers about the relationship between social determinants and mortality. Our work is a first step towards enabling public health stakeholders to automatically discover and visualize relationships between social determinants of health and mortality based on available data and explain and transform these into meaningful results using artificial intelligence. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

18 pages, 3172 KiB  
Article
Transformer-Based Approach to Pathology Diagnosis Using Audio Spectrogram
by Mohammad Tami, Sari Masri, Ahmad Hasasneh and Chakib Tadj
Information 2024, 15(5), 253; https://doi.org/10.3390/info15050253 - 30 Apr 2024
Viewed by 414
Abstract
Early detection of infant pathologies by non-invasive means is a critical aspect of pediatric healthcare. Audio analysis of infant crying has emerged as a promising method to identify various health conditions without direct medical intervention. In this study, we present a cutting-edge machine [...] Read more.
Early detection of infant pathologies by non-invasive means is a critical aspect of pediatric healthcare. Audio analysis of infant crying has emerged as a promising method to identify various health conditions without direct medical intervention. In this study, we present a cutting-edge machine learning model that employs audio spectrograms and transformer-based algorithms to classify infant crying into distinct pathological categories. Our innovative model bypasses the extensive preprocessing typically associated with audio data by exploiting the self-attention mechanisms of the transformer, thereby preserving the integrity of the audio’s diagnostic features. When benchmarked against established machine learning and deep learning models, our approach demonstrated a remarkable 98.69% accuracy, 98.73% precision, 98.71% recall, and an F1 score of 98.71%, surpassing the performance of both traditional machine learning and convolutional neural network models. This research not only provides a novel diagnostic tool that is scalable and efficient but also opens avenues for improving pediatric care through early and accurate detection of pathologies. Full article
(This article belongs to the Special Issue Deep Learning for Image, Video and Signal Processing)
Show Figures

Figure 1

24 pages, 9723 KiB  
Article
On the Generalizability of Machine Learning Classification Algorithms and Their Application to the Framingham Heart Study
by Nabil Kahouadji
Information 2024, 15(5), 252; https://doi.org/10.3390/info15050252 - 29 Apr 2024
Viewed by 547
Abstract
The use of machine learning algorithms in healthcare can amplify social injustices and health inequities. While the exacerbation of biases can occur and be compounded during problem selection, data collection, and outcome definition, this research pertains to the generalizability impediments that occur during [...] Read more.
The use of machine learning algorithms in healthcare can amplify social injustices and health inequities. While the exacerbation of biases can occur and be compounded during problem selection, data collection, and outcome definition, this research pertains to the generalizability impediments that occur during the development and post-deployment of machine learning classification algorithms. Using the Framingham coronary heart disease data as a case study, we show how to effectively select a probability cutoff to convert a regression model for a dichotomous variable into a classifier. We then compare the sampling distribution of the predictive performance of eight machine learning classification algorithms under four stratified training/testing scenarios to test their generalizability and their potential to perpetuate biases. We show that both extreme gradient boosting and support vector machine are flawed when trained on an unbalanced dataset. We then show that the double discriminant scoring of type 1 and 2 is the most generalizable with respect to the true positive and negative rates, respectively, as it consistently outperforms the other classification algorithms, regardless of the training/testing scenario. Finally, we introduce a methodology to extract an optimal variable hierarchy for a classification algorithm and illustrate it on the overall, male and female Framingham coronary heart disease data. Full article
(This article belongs to the Special Issue 2nd Edition of Data Science for Health Services)
Show Figures

Figure 1

18 pages, 873 KiB  
Article
Navigating Market Sentiments: A Novel Approach to Iron Ore Price Forecasting with Weighted Fuzzy Time Series
by Flavio Mauricio da Cunha Souza, Geraldo Pereira Rocha Filho, Frederico Gadelha Guimarães, Rodolfo I. Meneguette and Gustavo Pessin
Information 2024, 15(5), 251; https://doi.org/10.3390/info15050251 - 29 Apr 2024
Viewed by 347
Abstract
The global iron ore price is influenced by numerous factors, thus showcasing a complex interplay among them. The collective expectations of market participants over time shape the variations and trends within the iron ore price time series. Consequently, devising a robust forecasting model [...] Read more.
The global iron ore price is influenced by numerous factors, thus showcasing a complex interplay among them. The collective expectations of market participants over time shape the variations and trends within the iron ore price time series. Consequently, devising a robust forecasting model for the volatility of iron ore prices, as well as for other assets connected to this commodity, is critical for guiding future investments and decision-making processes in mining companies. Within this framework, the integration of artificial intelligence techniques, encompassing both technical and fundamental analyses, is aimed at developing a comprehensive, autonomous hybrid system for decision support, which is specialized in iron ore asset management. This approach not only enhances the accuracy of predictions but also supports strategic planning in the mining sector. Full article
Show Figures

Figure 1

17 pages, 1166 KiB  
Article
Resource Allocation and Pricing in Energy Harvesting Serverless Computing Internet of Things Networks
by Yunqi Li and Changlin Yang
Information 2024, 15(5), 250; https://doi.org/10.3390/info15050250 - 29 Apr 2024
Viewed by 414
Abstract
This paper considers a resource allocation problem involving servers and mobile users (MUs) operating in a serverless edge computing (SEC)-enabled Internet of Things (IoT) network. Each MU has a fixed budget, and each server is powered by the grid and has energy harvesting [...] Read more.
This paper considers a resource allocation problem involving servers and mobile users (MUs) operating in a serverless edge computing (SEC)-enabled Internet of Things (IoT) network. Each MU has a fixed budget, and each server is powered by the grid and has energy harvesting (EH) capability. Our objective is to maximize the revenue of the operator that operates the said servers and the number of resources purchased by the MUs. We propose a Stackelberg game approach, where servers and MUs act as leaders and followers, respectively. We prove the existence of a Stackelberg game equilibrium and develop an iterative algorithm to determine the final game equilibrium price. Simulation results show that the proposed scheme is efficient in terms of the SEC’s profit and MU’s demand. Moreover, both MUs and SECs gain benefits from renewable energy. Full article
(This article belongs to the Special Issue Internet of Things and Cloud-Fog-Edge Computing)
Show Figures

Figure 1

Back to TopTop