Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Journal = Modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 7554 KiB  
Article
Micro-Mechanical Hyperelastic Modelling for (Un)Filled Polyurethane with Considerations of Strain Amplification
by Saman H. Razavi, Vinicius C. Beber and Bernd Mayer
Modelling 2024, 5(2), 502-529; https://doi.org/10.3390/modelling5020027 - 24 Apr 2024
Viewed by 310
Abstract
Polyurethane (PU) is a very versatile material in engineering applications, whose mechanical properties can be tailored by the introduction of active fillers. The current research aims to (i) investigate the effect of active fillers with varying filler loads on the mechanical properties of [...] Read more.
Polyurethane (PU) is a very versatile material in engineering applications, whose mechanical properties can be tailored by the introduction of active fillers. The current research aims to (i) investigate the effect of active fillers with varying filler loads on the mechanical properties of a PU system and (ii) develop a micro-mechanical model to describe the hyperelastic behavior of (un)filled PU. Three models are taken into consideration: without strain amplification, with constant strain amplification, and with a deformation-dependent strain amplification. The measured uniaxial stress–strain data of the filled PU nanocomposites reveal clear reinforcement due to the incorporation of carbon black at 5, 10 and 20 wt%. In low concentration (1 wt%), for two different grades of carbon black and a fumed silica, it results in a reduction in the mechanical properties. The micro-mechanical model without strain amplification has a good agreement with the measured stress–strain curves at low concentrations of fillers (1 wt%). For higher filled concentrations (5–15 wt%), the micro-mechanical model with constant strain amplification leads to a better prediction performance. For samples with a larger filler volume fraction (20 wt%) and for a commercial adhesive, the model with a deformation-dependent strain amplification effect leads to the best predictions, i.e., highest R2 regarding curve fitting. Full article
Show Figures

Figure 1

19 pages, 8753 KiB  
Article
Numerical Simulation of the Interaction between a Planar Shock Wave and a Cylindrical Bubble
by Solomon Onwuegbu, Zhiyin Yang and Jianfei Xie
Modelling 2024, 5(2), 483-501; https://doi.org/10.3390/modelling5020026 - 16 Apr 2024
Viewed by 331
Abstract
Three-dimensional (3D) computational fluid dynamics (CFD) simulations have been carried out to investigate the complex interaction of a planar shock wave (Ma = 1.22) with a cylindrical bubble. The unsteady Reynolds-averaged Navier–Stokes (URANS) approach with a level set coupled with volume of fluid [...] Read more.
Three-dimensional (3D) computational fluid dynamics (CFD) simulations have been carried out to investigate the complex interaction of a planar shock wave (Ma = 1.22) with a cylindrical bubble. The unsteady Reynolds-averaged Navier–Stokes (URANS) approach with a level set coupled with volume of fluid (LSVOF) method has been applied in the present study. The predicted velocities of refracted wave, transmitted wave, upstream interface, downstream interface, jet, and vortex filaments are in very good agreement with the experimental data. The predicted non-dimensional bubble and vortex velocities also have great concordance with the experimental data compared with a simple model of shock-induced Rayleigh–Taylor instability (i.e., Richtmyer–Meshkov instability) and other theoretical models. The simulated changes in the bubble shape and size (length and width) against time agree very well with the experimental results. Comprehensive flow analysis has shown the shock–bubble interaction (SBI) process clearly from the onset of bubble compression up to the formation of vortex filaments, especially elucidating the mechanism on the air–jet formation and its development. It is demonstrated for the first time that turbulence is generated at the early phase of the shock cylindrical bubble interaction process, with the maximum turbulence intensity reaching about 20% around the vortex filament regions at the later phase of the interaction process. Full article
Show Figures

Figure 1

25 pages, 10837 KiB  
Article
Integrated Modeling of Coastal Processes Driven by an Advanced Mild Slope Wave Model
by Michalis K. Chondros, Anastasios S. Metallinos and Andreas G. Papadimitriou
Modelling 2024, 5(2), 458-482; https://doi.org/10.3390/modelling5020025 - 11 Apr 2024
Viewed by 722
Abstract
Numerical modeling of wave transformation, hydrodynamics, and morphodynamics in coastal regions holds paramount significance for combating coastal erosion by evaluating and optimizing various coastal protection structures. This study aims to present an integration of numerical models to accurately simulate the coastal processes with [...] Read more.
Numerical modeling of wave transformation, hydrodynamics, and morphodynamics in coastal regions holds paramount significance for combating coastal erosion by evaluating and optimizing various coastal protection structures. This study aims to present an integration of numerical models to accurately simulate the coastal processes with the presence of coastal and harbor structures. Specifically, integrated modeling employs an advanced mild slope model as the main driver, which is capable of describing all the wave transformation phenomena, including wave reflection. This model provides radiation stresses as inputs to a hydrodynamic model based on Reynolds-averaged Navier–Stokes equations to simulate nearshore currents. Ultimately, these models feed an additional model that can simulate longshore sediment transport and bed level changes. The models are validated against experimental measurements, including energy dissipation due to bottom friction and wave breaking; combined refraction, diffraction, and breaking over a submerged shoal; wave transformation and wave-generated currents over submerged breakwaters; and wave, currents, and sediment transport fields over a varying bathymetry. The models exhibit satisfactory performance in simulating all considered cases, establishing them as efficient and reliable integrated tools for engineering applications in real coastal areas. Moreover, leveraging the validated models, a numerical investigation is undertaken to assess the effects of wave reflection on a seawall on coastal processes for two ideal beach configurations—one with a steeper slope of 1:10 and another with a milder slope of 1:50. The numerical investigation reveals that the presence of reflected waves, particularly in milder bed slopes, significantly influences sediment transport, emphasizing the importance of employing a wave model that takes into account wave reflection as the primary driver for integrated modeling of coastal processes. Full article
Show Figures

Figure 1

20 pages, 3651 KiB  
Article
Forecasting Future Research Trends in the Construction Engineering and Management Domain Using Machine Learning and Social Network Analysis
by Gasser G. Ali, Islam H. El-adaway, Muaz O. Ahmed, Radwa Eissa, Mohamad Abdul Nabi, Tamima Elbashbishy and Ramy Khalef
Modelling 2024, 5(2), 438-457; https://doi.org/10.3390/modelling5020024 - 06 Apr 2024
Viewed by 551
Abstract
Construction Engineering and Management (CEM) is a broad domain with publications covering interrelated subdisciplines and considered a key source of knowledge sharing. Previous studies used scientometric methods to assess the current impact of CEM publications; however, there is a need to predict future [...] Read more.
Construction Engineering and Management (CEM) is a broad domain with publications covering interrelated subdisciplines and considered a key source of knowledge sharing. Previous studies used scientometric methods to assess the current impact of CEM publications; however, there is a need to predict future citations of CEM publications to identify the expected high-impact trends in the future and guide new research efforts. To tackle this gap in the literature, the authors conducted a study using Machine Learning (ML) algorithms and Social Network Analysis (SNA) to predict CEM-related citation metrics. Using a dataset of 93,868 publications, the authors trained and tested two machine learning classification algorithms: Random Forest and XGBoost. Validation of the RF and XGBoost resulted in a balanced accuracy of 79.1% and 79.5%, respectively. Accordingly, XGBoost was selected. Testing of the XGBoost model revealed a balanced accuracy of 80.71%. Using SNA, it was found that while the top CEM subdisciplines in terms of the number of predicted impactful papers are “Project planning and design”, “Organizational issues”, and “Information technologies, robotics, and automation”; the lowest was “Legal and contractual issues”. This paper contributes to the body of knowledge by studying the citation level, strength, and interconnectivity between CEM subdisciplines as well as identifying areas more likely to result in highly cited publications. Full article
Show Figures

Figure 1

14 pages, 2524 KiB  
Article
Numerical Analysis of Crack Propagation in an Aluminum Alloy under Random Load Spectra
by Fangli Wang, Jie Zheng, Kai Liu, Mingbo Tong and Jinyu Zhou
Modelling 2024, 5(2), 424-437; https://doi.org/10.3390/modelling5020023 - 04 Apr 2024
Viewed by 378
Abstract
This study develops a rapid algorithm coupled with the finite element method to predict the fatigue crack propagation process and select the enhancement factor for the equivalent random load spectrum of accelerated fatigue tests. The proposed algorithm is validated by several fatigue tests [...] Read more.
This study develops a rapid algorithm coupled with the finite element method to predict the fatigue crack propagation process and select the enhancement factor for the equivalent random load spectrum of accelerated fatigue tests. The proposed algorithm is validated by several fatigue tests of an aluminum alloy under the accelerated random load spectra. In the validation process, two kinds of panels with different geometries and sizes are used to calculate the stress intensity factor, critical crack length, and crack propagation life. The simulated and experimental findings indicate that when the aluminum alloy is in a low plasticity state, the crack propagation life exhibits a linear relationship with the acceleration factor. When the aluminum alloy is in a high plasticity state, this study proposes an empirical formula to calculate the equivalent stress intensity factor and crack propagation life. The normalized empirical formula is independent of the geometry and size of different samples, although the fracture processes are different in the two kinds of panels used in our study. Overall, the numerical method proposed in this paper can be applied to predict the fatigue crack propagation life for the random spectrum of large samples based on the results of the simulated accelerated crack propagation process and the accelerated fatigue tests of small samples to reduce the cost and time of the testing. Full article
Show Figures

Figure 1

14 pages, 3921 KiB  
Article
On Mechanical and Chaotic Problem Modeling and Numerical Simulation Using Electric Networks
by Pedro Aráez, José Antonio Jiménez-Valera and Iván Alhama
Modelling 2024, 5(2), 410-423; https://doi.org/10.3390/modelling5020022 - 25 Mar 2024
Viewed by 399
Abstract
After reviewing the use of electrical circuit elements to model dynamic processes or the operation of devices or equipment, both in real laboratory implementations and through ideal circuits implemented in simulation software, a network model design protocol is proposed. This approach, following the [...] Read more.
After reviewing the use of electrical circuit elements to model dynamic processes or the operation of devices or equipment, both in real laboratory implementations and through ideal circuits implemented in simulation software, a network model design protocol is proposed. This approach, following the basic rules of circuit theory, makes use of controlled generators to implement any type of nonlinearity contained in the governing equations. Such a protocol constitutes an interesting educational tool that makes it possible for nonexpert students in mathematics to design and numerically simulate complex physical processes. Three applications to mechanical and chaotic problems are presented to illustrate the versatility of the proposed protocol. Full article
Show Figures

Figure 1

18 pages, 13778 KiB  
Article
Computational Modelling of Intra-Module Connections and Their Influence on the Robustness of a Steel Corner-Supported Volumetric Module
by Si Hwa Heng, David Hyland, Michael Hough and Daniel McCrum
Modelling 2024, 5(1), 392-409; https://doi.org/10.3390/modelling5010021 - 21 Mar 2024
Viewed by 609
Abstract
This paper investigates the robustness of a single 3D volumetric corner-supported module made of square hollow-section (SHS) columns. Typically, the moment–rotation (M-θ) behaviour of connections within the module (intra-module) is assumed to be fully rigid rather than semi-rigid, resulting in inaccurate assessment (i.e., [...] Read more.
This paper investigates the robustness of a single 3D volumetric corner-supported module made of square hollow-section (SHS) columns. Typically, the moment–rotation (M-θ) behaviour of connections within the module (intra-module) is assumed to be fully rigid rather than semi-rigid, resulting in inaccurate assessment (i.e., overestimated vertical stiffness) during extreme loading events, such as progressive collapse. The intra-module connections are not capable of rigidly transferring the moment from the beams to the SHS columns. In this paper, a computationally intensive shell element model (SEM) of the module frame is created. The M-θ relationship of the intra-module connections in the SEM is firstly validated against test results by others and then replicated in a new simplified phenomenological beam element model (BEM), using nonlinear spring elements to capture the M-θ relationship. Comparing the structural behaviour of the SEM and BEM, under notional support removal, shows that the proposed BEM with semi-rigid connections (SR-BEM) agrees well with the validated SEM and requires substantially lower modelling time (98.7% lower) and computational effort (97.4% less RAM). When compared to a BEM with the typically modelled fully rigid intra-module connections (FR-BEM), the vertical displacement in the SR-BEM is at least 16% higher. The results demonstrate the importance of an accurate assessment of framing rotational stiffness and the benefits of a computationally efficient model. Full article
Show Figures

Graphical abstract

25 pages, 7691 KiB  
Article
A CALPHAD-Informed Enthalpy Method for Multicomponent Alloy Systems with Phase Transitions
by Robert Scherr, Philipp Liepold, Matthias Markl and Carolin Körner
Modelling 2024, 5(1), 367-391; https://doi.org/10.3390/modelling5010020 - 08 Mar 2024
Viewed by 571
Abstract
Solid–liquid phase transitions of metals and alloys play an important role in many technical processes. Therefore, corresponding numerical process simulations need adequate models. The enthalpy method is the current state-of-the-art approach for this task. However, this method has some limitations regarding multicomponent alloys [...] Read more.
Solid–liquid phase transitions of metals and alloys play an important role in many technical processes. Therefore, corresponding numerical process simulations need adequate models. The enthalpy method is the current state-of-the-art approach for this task. However, this method has some limitations regarding multicomponent alloys as it does not consider the enthalpy of mixing, for example. In this work, we present a novel CALPHAD-informed version of the enthalpy method that removes these drawbacks. In addition, special attention is given to the handling of polymorphic as well as solid–liquid phase transitions. Efficient and robust algorithms for the conversion between enthalpy and temperature were developed. We demonstrate the capabilities of the presented method using two different implementations: a lattice Boltzmann and a finite difference solver. We proof the correct behaviour of the developed method by different validation scenarios. Finally, the model is applied to electron beam powder bed fusion—a modern additive manufacturing process for metals and alloys that allows for different powder mixtures to be alloyed in situ to produce complex engineering parts. We reveal that the enthalpy of mixing has a significant effect on the temperature and lifetime of the melt pool and thus on the part properties. Full article
Show Figures

Figure 1

15 pages, 1839 KiB  
Article
Effects of Chemical Short-Range Order and Temperature on Basic Structure Parameters and Stacking Fault Energies in Multi-Principal Element Alloys
by Subah Mubassira, Wu-Rong Jian and Shuozhi Xu
Modelling 2024, 5(1), 352-366; https://doi.org/10.3390/modelling5010019 - 28 Feb 2024
Cited by 1 | Viewed by 703
Abstract
In the realm of advanced material science, multi-principal element alloys (MPEAs) have emerged as a focal point due to their exceptional mechanical properties and adaptability for high-performance applications. This study embarks on an extensive investigation of four MPEAs—CoCrNi, MoNbTa, HfNbTaTiZr, and HfMoNbTaTi—alongside key [...] Read more.
In the realm of advanced material science, multi-principal element alloys (MPEAs) have emerged as a focal point due to their exceptional mechanical properties and adaptability for high-performance applications. This study embarks on an extensive investigation of four MPEAs—CoCrNi, MoNbTa, HfNbTaTiZr, and HfMoNbTaTi—alongside key pure metals (Mo, Nb, Ta, Ni) to unveil their structural and mechanical characteristics. Utilizing a blend of molecular statics and hybrid molecular dynamics/Monte Carlo simulations, the research delves into the impact of chemical short-range order (CSRO) and thermal effects on the fundamental structural parameters and stacking fault energies in these alloys. The study systematically analyzes quantities such as lattice parameters, elastic constants (C11, C12, and C44), and generalized stacking fault energies (GSFEs) across two distinct structures: random and CSRO. These properties are then evaluated at diverse temperatures (0, 300, 600, 900, 1200 K), offering a comprehensive understanding of temperature’s influence on material behavior. For CSRO, CoCrNi was annealed at 350 K and MoNbTa at 300 K, while both HfMoNbTaTi and HfNbTaTiZr were annealed at 300 K, 600 K, and 900 K, respectively. The results indicate that the lattice parameter increases with temperature, reflecting typical thermal expansion behavior. In contrast, both elastic constants and GSFE decrease with rising temperature, suggesting a reduction in resistance to stability and dislocation motion as thermal agitation intensifies. Notably, MPEAs with CSRO structures exhibit higher stiffness and GSFEs compared to their randomly structured counterparts, demonstrating the significant role of atomic ordering in enhancing material strength. Full article
Show Figures

Figure 1

13 pages, 3427 KiB  
Article
Modeling and Simulation of a Planar Permanent Magnet On-Chip Power Inductor
by Jaber A. Abu Qahouq and Mohammad K. Al-Smadi
Modelling 2024, 5(1), 339-351; https://doi.org/10.3390/modelling5010018 - 22 Feb 2024
Viewed by 561
Abstract
The on-chip integration of a power inductor together with other power converter components of small sizes and high-saturation currents, while maintaining a desired or high inductance value, is here pursued. The use of soft magnetic cores increases inductance density but results in a [...] Read more.
The on-chip integration of a power inductor together with other power converter components of small sizes and high-saturation currents, while maintaining a desired or high inductance value, is here pursued. The use of soft magnetic cores increases inductance density but results in a reduced saturation current. This article presents a 3D physical model and a magnetic circuit model for an integrated on-chip power inductor (OPI) to double the saturation current using permanent magnet (PM) material. A ~50 nH, 7.5 A spiral permanent magnet on-chip power inductor (PMOI) is here designed, and a 3D physical model is then developed and simulated using the ANSYS®/Maxwell® software package (version 2017.1). The 3D physical model simulation results agree with the presented magnetic circuit model, and show that in the example PMOI design, the addition of the PM increases the saturation current of the OPI from 4 A to 7.5 A, while the size and inductance value remain unchanged. Full article
Show Figures

Figure 1

24 pages, 17704 KiB  
Article
Seismic Resilience of Emergency Departments: A Case Study
by Maria Pianigiani, Stefania Viti and Marco Tanganelli
Modelling 2024, 5(1), 315-338; https://doi.org/10.3390/modelling5010017 - 22 Feb 2024
Viewed by 580
Abstract
In this work, the seismic resilience of the Emergency Department of a hospital complex located in Tuscany (Italy), including its nonstructural components and organizational features, has been quantified. Special attention has been paid to the ceilings, whose potential damage stood out in past [...] Read more.
In this work, the seismic resilience of the Emergency Department of a hospital complex located in Tuscany (Italy), including its nonstructural components and organizational features, has been quantified. Special attention has been paid to the ceilings, whose potential damage stood out in past earthquakes. A comprehensive metamodel has been set, which can relate all the considered parameters to the assumed response quantity, i.e., the waiting time of the yellow-code patients arriving at the Emergency Department in the hours immediately after the seismic event. The seismic resilience of the Emergency Department has been measured for potential earthquakes compatible with the seismic hazard of the area. Full article
Show Figures

Figure 1

23 pages, 640 KiB  
Article
Intent Identification by Semantically Analyzing the Search Query
by Tangina Sultana, Ashis Kumar Mandal, Hasi Saha, Md. Nahid Sultan and Md. Delowar Hossain
Modelling 2024, 5(1), 292-314; https://doi.org/10.3390/modelling5010016 - 22 Feb 2024
Viewed by 555
Abstract
Understanding and analyzing the search intent of a user semantically based on their input query has emerged as an intriguing challenge in recent years. It suffers from small-scale human-labeled training data that produce a very poor hypothesis of rare words. The majority of [...] Read more.
Understanding and analyzing the search intent of a user semantically based on their input query has emerged as an intriguing challenge in recent years. It suffers from small-scale human-labeled training data that produce a very poor hypothesis of rare words. The majority of data portals employ keyword-driven search functionality to explore content within their repositories. However, the keyword-based search cannot identify the users’ search intent accurately. Integrating a query-understandable framework into keyword search engines has the potential to enhance their performance, bridging the gap in interpreting the user’s search intent more effectively. In this study, we have proposed a novel approach that focuses on spatial and temporal information, phrase detection, and semantic similarity recognition to detect the user’s intent from the search query. We have used the n-gram probabilistic language model for phrase detection. Furthermore, we propose a probability-aware gated mechanism for RoBERTa (Robustly Optimized Bidirectional Encoder Representations from Transformers Approach) embeddings to semantically detect the user’s intent. We analyze and compare the performance of the proposed scheme with the existing state-of-the-art schemes. Furthermore, a detailed case study has been conducted to validate the model’s proficiency in semantic analysis, emphasizing its adaptability and potential for real-world applications where nuanced intent understanding is crucial. The experimental result demonstrates that our proposed system can significantly improve the accuracy for detecting the users’ search intent as well as the quality of classification during search. Full article
Show Figures

Figure 1

16 pages, 1274 KiB  
Article
An Efficient Explicit Moving Particle Simulation Solver for Simulating Free Surface Flow on Multicore CPU/GPUs
by Yu Zhao, Fei Jiang and Shinsuke Mochizuki
Modelling 2024, 5(1), 276-291; https://doi.org/10.3390/modelling5010015 - 19 Feb 2024
Viewed by 522
Abstract
The moving particle simulation (MPS) method is a simulation technique capable of calculating free surface and incompressible flows. As a particle-based method, MPS requires significant computational resources when simulating flow in a large-scale domain with a huge number of particles. Therefore, improving computational [...] Read more.
The moving particle simulation (MPS) method is a simulation technique capable of calculating free surface and incompressible flows. As a particle-based method, MPS requires significant computational resources when simulating flow in a large-scale domain with a huge number of particles. Therefore, improving computational speed is a crucial aspect of current research in particle methods. In recent decades, many-core CPUs and GPUs have been widely utilized in scientific simulations to significantly enhance computational efficiency. However, the implementation of MPS on different types of hardware is not a trivial task. In this study, we present an implementation method for the explicit MPS that utilizes the Taichi parallel programming language. When it comes to CPU computing, Taichi’s computational efficiency is comparable to that of OpenMP. Nevertheless, when GPU computing is utilized, the acceleration of Taichi in parallel computing is not as fast as the CUDA implementation. Our developed explicit MPS solver demonstrates significant performance improvements in simulating dam-break flow dynamics. Full article
Show Figures

Figure 1

11 pages, 1413 KiB  
Article
Model for Hydrogen Production Scheduling Optimisation
by Vitalijs Komasilovs, Aleksejs Zacepins, Armands Kviesis and Vladislavs Bezrukovs
Modelling 2024, 5(1), 265-275; https://doi.org/10.3390/modelling5010014 - 19 Feb 2024
Viewed by 562
Abstract
This scientific article presents a developed model for optimising the scheduling of hydrogen production processes, addressing the growing demand for efficient and sustainable energy sources. The study focuses on the integration of advanced scheduling techniques to improve the overall performance of the hydrogen [...] Read more.
This scientific article presents a developed model for optimising the scheduling of hydrogen production processes, addressing the growing demand for efficient and sustainable energy sources. The study focuses on the integration of advanced scheduling techniques to improve the overall performance of the hydrogen electrolyser. The proposed model leverages constraint programming and satisfiability (CP-SAT) techniques to systematically analyse complex production schedules, considering factors such as production unit capacities, resource availability and energy costs. By incorporating real-world constraints, such as fluctuating energy prices and the availability of renewable energy, the optimisation model aims to improve overall operational efficiency and reduce production costs. The CP-SAT was applied to achieve more efficient control of the electrolysis process. The optimisation of the scheduling task was set for a 24 h time period with time resolutions of 1 h and 15 min. The performance of the proposed CP-SAT model in this study was then compared with the Monte Carlo Tree Search (MCTS)-based model (developed in our previous work). The CP-SAT was proven to perform better but has several limitations. The model response to the input parameter change has been analysed. Full article
Show Figures

Figure 1

27 pages, 2518 KiB  
Article
Methodology for International Transport Corridor Macro-Modeling Using Petri Nets at the Early Stages of Corridor Development with Limited Input Data
by Igor Kabashkin and Zura Sansyzbayeva
Modelling 2024, 5(1), 238-264; https://doi.org/10.3390/modelling5010013 - 17 Feb 2024
Viewed by 603
Abstract
International transport corridors (ITCs) are intricate logistical networks essential for global trade flows. The effective modeling of these corridors provides invaluable insights into optimizing the transport system. However, existing approaches have significant limitations in dynamically representing the complexities and uncertainties inherent in ITC [...] Read more.
International transport corridors (ITCs) are intricate logistical networks essential for global trade flows. The effective modeling of these corridors provides invaluable insights into optimizing the transport system. However, existing approaches have significant limitations in dynamically representing the complexities and uncertainties inherent in ITC operations and at the early stages of ITC development when data are limited. This gap is addressed through the application of Evaluation Petri Nets (E-Nets), which facilitate the detailed, flexible, and responsive macro-modeling of international transport corridors. This paper proposes a novel methodology for developing E-Net-based macro-models of corridors by incorporating key parameters like transportation time, costs, and logistics performance. The model is scalable, enabling analysis from an international perspective down to specific country segments. E-Nets overcome limitations of conventional transport models by capturing the interactive, stochastic nature of ITCs. The proposed modeling approach and scalability provide strategic insights into optimizing corridor efficiency. This research delivers a streamlined yet comprehensive methodology for ITC modeling using E-Nets. The presented framework has substantial potential for enhancing logistics system analysis and planning. Full article
Show Figures

Figure 1

Back to TopTop