Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,011)

Search Parameters:
Journal = Pharmaceutics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4593 KiB  
Article
A Novel 2-Methoxyestradiol Derivative: Disrupting Mitosis-Inhibiting Cell Motility and Inducing Apoptosis in HeLa Cells In Vitro
by Isaac Kinyua Njangiru, Noémi Bózsity-Faragó, Vivien Erzsébet Resch, Gábor Paragi, Éva Frank, György T. Balogh, István Zupkó and Renáta Minorics
Pharmaceutics 2024, 16(5), 622; https://doi.org/10.3390/pharmaceutics16050622 - 06 May 2024
Abstract
The clinical application of 2-methoxyestradiol (2ME) in cancer therapy has been limited by its low solubility and rapid metabolism. Derivatives of 2ME have been synthesised to enhance bioavailability and decrease hepatic metabolism. Compound 4a, an analog of 2ME, has demonstrated exceptional pharmacological [...] Read more.
The clinical application of 2-methoxyestradiol (2ME) in cancer therapy has been limited by its low solubility and rapid metabolism. Derivatives of 2ME have been synthesised to enhance bioavailability and decrease hepatic metabolism. Compound 4a, an analog of 2ME, has demonstrated exceptional pharmacological activity, in addition to promising pharmacokinetic profile. Our study, therefore, aimed at exploring the anticancer effects of 4a on the cervical cancer cell line, HeLa. Compound 4a exhibited a significant and dose-dependent antimetastatic and antiinvasive impact on HeLa cells, as determined by wound-healing and Boyden chamber assays, respectively. Hoechst/Propidium iodide (HOPI) double staining showcased a substantial induction of apoptosis via 4a, with minimal necrotic effect. Flow cytometry revealed a significant G2/M phase arrest, accompanied by a noteworthy rise in the sub-G1 cell population, indicating apoptosis, 18 h post-treatment. Moreover, a cell-independent tubulin polymerisation assay illustrated compound 4a’s ability to stabilise microtubules by promoting tubulin polymerisation. Molecular modelling experiments depicted that 4a interacts with the colchicine-binding site, nestled between the α and β tubulin dimers. Furthermore, 4a displayed an affinity for binding to and activating ER-α, as demonstrated by the luciferase reporter assay. These findings underscore the potential of 4a in inhibiting HPV18+ cervical cancer proliferation and cellular motility. Full article
(This article belongs to the Special Issue Steroid Derivatives: Design and Pharmaceutical Application)
Show Figures

Figure 1

10 pages, 1045 KiB  
Article
Testosterone Therapy for Late-Onset Hypogonadism: A Clinical, Biological, and Analytical Approach Using Compounded Testosterone 0.5–20% Topical Gels
by Daniel Banov, Bruce Biundo, Kendice Ip, Ashley Shan, Fabiana Banov, Guiyun Song and Maria Carvalho
Pharmaceutics 2024, 16(5), 621; https://doi.org/10.3390/pharmaceutics16050621 - 06 May 2024
Viewed by 157
Abstract
Testosterone is integral to men’s sexual and overall health, but there is a gradual decline in the ageing male. The topical administration of testosterone is a valuable option as a supplement (replacement) therapy to alleviate hypogonadal symptoms. The clinical efficacy of a compounded [...] Read more.
Testosterone is integral to men’s sexual and overall health, but there is a gradual decline in the ageing male. The topical administration of testosterone is a valuable option as a supplement (replacement) therapy to alleviate hypogonadal symptoms. The clinical efficacy of a compounded testosterone 5% topical gel was assessed retrospectively in a male patient in his seventies by evaluating the laboratory testing of the serum total testosterone and the results of a validated androgen deficiency questionnaire. After treatment, the patient’s hypogonadal symptoms improved and the serum total testosterone level achieved was considered clinically optimal. The skin permeation of the testosterone topical gel (biological testing) was evaluated in vitro using the Franz finite dose model and human cadaver skin, and it is shown that testosterone can penetrate into and through ex vivo human skin. Testosterone therapy is often prescribed for extended periods, and consequently, it is crucial to determine the beyond-use date of the compounded formulations. The analytical testing involved a valid, stability-indicating assay method for compounded testosterone 0.5% and 20% topical gels. This multidisciplinary study shows evidence supporting topically applied testosterone’s clinical efficacy and the compounded formulations’ extended stability. Personalized, topical testosterone therapy is a promising alternative in current therapeutics for hypogonadal patients. Full article
Show Figures

Figure 1

22 pages, 5297 KiB  
Article
Development and Evaluation of a Water-Free In Situ Depot Gel Formulation for Long-Acting and Stable Delivery of Peptide Drug ACTY116
by Yingxin Xiong, Zhirui Liu, Yuanqiang Wang, Jiawei Wang, Xing Zhou and Xiaohui Li
Pharmaceutics 2024, 16(5), 620; https://doi.org/10.3390/pharmaceutics16050620 - 05 May 2024
Viewed by 219
Abstract
In situ depot gel is a type of polymeric long-acting injectable (pLAI) drug delivery system; compared to microsphere technology, its preparation process is simpler and more conducive to industrialization. To ensure the chemical stability of peptide ACTY116, we avoided the use of harsh [...] Read more.
In situ depot gel is a type of polymeric long-acting injectable (pLAI) drug delivery system; compared to microsphere technology, its preparation process is simpler and more conducive to industrialization. To ensure the chemical stability of peptide ACTY116, we avoided the use of harsh conditions such as high temperatures, high shear mixing, or homogenization; maintaining a water-free and oxygen-free environment was also critical to prevent hydrolysis and oxidation. Molecular dynamics (MDs) simulations were employed to assess the stability mechanism between ACTY116 and the pLAI system. The initial structure of ACTY116 with an alpha helix conformation was constructed using SYBYL-X, and the copolymer PLGA was generated by AMBER 16; results showed that PLGA-based in situ depot gel improved conformational stability of ACTY116 through hydrogen bonds formed between peptide ACTY116 and the components of the pLAI formulation, while PLGA (Poly(DL-lactide-co-glycolide)) also created steric hindrance and shielding effects to prevent conformational changes. As a result, the chemical and conformational stability and in vivo long-acting characteristics of ACTY116 ensure its enhanced efficacy. In summary, we successfully achieved our objective of developing a highly stable peptide-loaded long-acting injectable (LAI) in situ depot gel formulation that is stable for at least 3 months under harsh conditions (40 °C, above body temperature), elucidating the underlying stabilisation mechanism, and the high stability of the ACTY116 pLAI formulation creates favourable conditions for its in vivo pharmacological activity lasting for weeks or even months. Full article
Show Figures

Figure 1

16 pages, 6348 KiB  
Article
Cell-Membrane-Coated Metal–Organic Framework Nanocarrier Combining Chemodynamic Therapy for the Inhibition of Hepatocellular Carcinoma Proliferation
by Huaying Xie, Xuhua Xiao, Xiaoyuan Yi, Kunzhao Huang and Liyan Wang
Pharmaceutics 2024, 16(5), 619; https://doi.org/10.3390/pharmaceutics16050619 - 05 May 2024
Viewed by 256
Abstract
Chemodynamic therapy (CDT) employs hydrogen peroxide (H2O2) within the tumor microenvironment (TME) to initiate the Fenton reaction and catalyze the generation of hydroxyl radicals (·OH) for targeted therapy. Metal ion-based nanomaterials have garnered significant attention as catalysts due to [...] Read more.
Chemodynamic therapy (CDT) employs hydrogen peroxide (H2O2) within the tumor microenvironment (TME) to initiate the Fenton reaction and catalyze the generation of hydroxyl radicals (·OH) for targeted therapy. Metal ion-based nanomaterials have garnered significant attention as catalysts due to their potent anti-tumor effects. Hypoxia in the TME is often associated with cancer cell development and metastasis, with HIF-1α being a pivotal factor in hypoxia adaptation. In this study, an organic framework called MIL-101 (Fe) was designed and synthesized to facilitate H2O2-induced ·OH production while also serving as a carrier for the HIF-1α inhibitor Acriflavine (ACF). A biomimetic nanomedical drug delivery system named MIL-101/ACF@CCM was constructed by encapsulating liver cancer cell membranes onto the framework. This delivery system utilized the homologous targeting of tumor cell membranes to transport ACF, inhibiting HIF-1α expression, alleviating tumor hypoxia, and catalyzing ·OH production for effective tumor eradication. Both in vivo and in vitro experiments confirmed that combining ACF with chemotherapy achieved remarkable tumor inhibition by enhancing ROS production and suppressing HIF-1α expression. Full article
Show Figures

Figure 1

23 pages, 2697 KiB  
Article
Evaluation of Silybin Nanoparticles against Liver Damage in Murine Schistosomiasis mansoni Infection
by Daniel Figueiredo Vanzan, Ester Puna Goma, Fernanda Resende Locatelli, Thiago da Silva Honorio, Priscila de Souza Furtado, Carlos Rangel Rodrigues, Valeria Pereira de Sousa, Hilton Antônio Mata dos Santos, Flávia Almada do Carmo, Alice Simon, Alexandre dos Santos Pyrrho, António José Ribeiro and Lucio Mendes Cabral
Pharmaceutics 2024, 16(5), 618; https://doi.org/10.3390/pharmaceutics16050618 - 04 May 2024
Viewed by 440
Abstract
Silybin (SIB) is a hepatoprotective drug known for its poor oral bioavailability, attributed to its classification as a class IV drug with significant metabolism during the first-pass effect. This study explored the potential of solid lipid nanoparticles with (SLN-SIB-U) or without (SLN-SIB) ursodeoxycholic [...] Read more.
Silybin (SIB) is a hepatoprotective drug known for its poor oral bioavailability, attributed to its classification as a class IV drug with significant metabolism during the first-pass effect. This study explored the potential of solid lipid nanoparticles with (SLN-SIB-U) or without (SLN-SIB) ursodeoxycholic acid and polymeric nanoparticles (PN-SIB) as delivery systems for SIB. The efficacy of these nanosystems was assessed through in vitro studies using the GRX and Caco-2 cell lines for permeability and proliferation assays, respectively, as well as in vivo experiments employing a murine model of Schistosomiasis mansoni infection in BALB/c mice. The mean diameter and encapsulation efficiency of the nanosystems were as follows: SLN-SIB (252.8 ± 4.4 nm, 90.28 ± 2.2%), SLN-SIB-U (252.9 ± 14.4 nm, 77.05 ± 2.8%), and PN-SIB (241.8 ± 4.1 nm, 98.0 ± 0.2%). In the proliferation assay with the GRX cell line, SLN-SIB and SLN-SIB-U exhibited inhibitory effects of 43.09 ± 5.74% and 38.78 ± 3.78%, respectively, compared to PN-SIB, which showed no inhibitory effect. Moreover, SLN-SIB-U demonstrated a greater apparent permeability coefficient (25.82 ± 2.2) than PN-SIB (20.76 ± 0.1), which was twice as high as that of SLN-SIB (11.32 ± 4.6) and pure SIB (11.28 ± 0.2). These findings suggest that solid lipid nanosystems hold promise for further in vivo investigations. In the murine model of acute-phase Schistosomiasis mansoni infection, both SLN-SIB and SLN-SIB-U displayed hepatoprotective effects, as evidenced by lower alanine amino transferase values (22.89 ± 1.6 and 23.93 ± 2.4 U/L, respectively) than those in control groups I (29.55 ± 0.7 U/L) and I+SIB (34.29 ± 0.3 U/L). Among the prepared nanosystems, SLN-SIB-U emerges as a promising candidate for enhancing the pharmacokinetic properties of SIB. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

14 pages, 1529 KiB  
Article
Enhancing Cellular Uptake of Native Proteins through Bio-Orthogonal Conjugation with Chemically Synthesized Cell-Penetrating Peptides
by Jekaterina Nebogatova, Ly Porosk, Heleri Heike Härk and Kaido Kurrikoff
Pharmaceutics 2024, 16(5), 617; https://doi.org/10.3390/pharmaceutics16050617 - 03 May 2024
Viewed by 355
Abstract
The potential for native proteins to serve as a platform for biocompatible, targeted, and personalized therapeutics in the context of genetic and metabolic disorders is vast. Nevertheless, their clinical application encounters challenges, particularly in overcoming biological barriers and addressing the complexities involved in [...] Read more.
The potential for native proteins to serve as a platform for biocompatible, targeted, and personalized therapeutics in the context of genetic and metabolic disorders is vast. Nevertheless, their clinical application encounters challenges, particularly in overcoming biological barriers and addressing the complexities involved in engineering transmembrane permeability. This study is dedicated to the development of a multifunctional nanoentity in which a model therapeutic protein is covalently linked to a cell-penetrating peptide, NickFect 55, with the objective of enhancing its intracellular delivery. Successful binding of the nanoentity fragments was achieved through the utilization of an intein-mediated protein-trans splicing reaction. Our research demonstrates that the fully assembled nanoentity-containing protein was effectively internalized by the cells, underscoring the potential of this approach in overcoming barriers associated with protein-based therapeutics for the treatment of genetic disorders. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

18 pages, 3237 KiB  
Article
Radiological and Molecular Analysis of Radioiodinated Anastrozole and Epirubicin as Innovative Radiopharmaceuticals Targeting Methylenetetrahydrofolate Dehydrogenase 2 in Solid Tumors
by Mazen Abdulrahman Binmujlli
Pharmaceutics 2024, 16(5), 616; https://doi.org/10.3390/pharmaceutics16050616 - 03 May 2024
Viewed by 278
Abstract
In the dynamic field of radiopharmaceuticals, innovating targeted agents for cancer diagnosis and therapy is crucial. Our study enriches this evolving landscape by evaluating the potential of radioiodinated anastrozole ([125I]anastrozole) and radioiodinated epirubicin ([125I]epirubicin) as targeting agents against MTHFD2-driven [...] Read more.
In the dynamic field of radiopharmaceuticals, innovating targeted agents for cancer diagnosis and therapy is crucial. Our study enriches this evolving landscape by evaluating the potential of radioiodinated anastrozole ([125I]anastrozole) and radioiodinated epirubicin ([125I]epirubicin) as targeting agents against MTHFD2-driven tumors. MTHFD2, which is pivotal in one-carbon metabolism, is notably upregulated in various cancers, presenting a novel target for radiopharmaceutical application. Through molecular docking and 200 ns molecular dynamics (MD) simulations, we assess the binding efficiency and stability of [125I]anastrozole and [125I]epirubicin with MTHFD2. Molecular docking illustrates that [125I]epirubicin has a superior binding free energy (∆Gbind) of −41.25 kJ/mol compared to −39.07 kJ/mol for [125I]anastrozole and −38.53 kJ/mol for the control ligand, suggesting that it has a higher affinity for MTHFD2. MD simulations reinforce this, showing stable binding, as evidenced by root mean square deviation (RMSD) values within a narrow range, underscoring the structural integrity of the enzyme–ligand complexes. The root mean square fluctuation (RMSF) analysis indicates consistent dynamic behavior of the MTHFD2 complex upon binding with [125I]anastrozole and [125I]epirubicin akin to the control. The radius of gyration (RG) measurements of 16.90 Å for MTHFD2-[125I]anastrozole and 16.84 Å for MTHFD2-[125I]epirubicin confirm minimal structural disruption upon binding. The hydrogen bond analysis reveals averages of two and three stable hydrogen bonds for [125I]anastrozole and [125I]epirubicin complexes, respectively, highlighting crucial stabilizing interactions. The MM-PBSA calculations further endorse the thermodynamic favorability of these interactions, with binding free energies of −48.49 ± 0.11 kJ/mol for [125I]anastrozole and −43.8 kJ/mol for MTHFD2-. The significant contribution of Van der Waals and electrostatic interactions to the binding affinities of [125I]anastrozole and [125I]epirubicin, respectively, underscores their potential efficacy for targeted tumor imaging and therapy. These computational findings lay the groundwork for the future experimental validation of [125I]anastrozole and [125I]epirubicin as MTHFD2 inhibitors, heralding a notable advancement in precision oncology tools. The data necessitate subsequent in vitro and in vivo assays to corroborate these results. Full article
(This article belongs to the Special Issue Theranostic Radiopharmaceuticals: Current Status and Perspectives)
Show Figures

Figure 1

20 pages, 2199 KiB  
Article
Organ-on-a-Chip: Ubi sumus? Fundamentals and Design Aspects
by Ana Sofia Morais, Maria Mendes, Marta Agostinho Cordeiro, João J. Sousa, Alberto Canelas Pais, Silvia M. Mihăilă and Carla Vitorino
Pharmaceutics 2024, 16(5), 615; https://doi.org/10.3390/pharmaceutics16050615 - 02 May 2024
Viewed by 381
Abstract
This review outlines the evolutionary journey from traditional two-dimensional (2D) cell culture to the revolutionary field of organ-on-a-chip technology. Organ-on-a-chip technology integrates microfluidic systems to mimic the complex physiological environments of human organs, surpassing the limitations of conventional 2D cultures. This evolution has [...] Read more.
This review outlines the evolutionary journey from traditional two-dimensional (2D) cell culture to the revolutionary field of organ-on-a-chip technology. Organ-on-a-chip technology integrates microfluidic systems to mimic the complex physiological environments of human organs, surpassing the limitations of conventional 2D cultures. This evolution has opened new possibilities for understanding cell–cell interactions, cellular responses, drug screening, and disease modeling. However, the design and manufacture of microchips significantly influence their functionality, reliability, and applicability to different biomedical applications. Therefore, it is important to carefully consider design parameters, including the number of channels (single, double, or multi-channels), the channel shape, and the biological context. Simultaneously, the selection of appropriate materials compatible with the cells and fabrication methods optimize the chips’ capabilities for specific applications, mitigating some disadvantages associated with these systems. Furthermore, the success of organ-on-a-chip platforms greatly depends on the careful selection and utilization of cell resources. Advances in stem cell technology and tissue engineering have contributed to the availability of diverse cell sources, facilitating the development of more accurate and reliable organ-on-a-chip models. In conclusion, a holistic perspective of in vitro cellular modeling is provided, highlighting the integration of microfluidic technology and meticulous chip design, which play a pivotal role in replicating organ-specific microenvironments. At the same time, the sensible use of cell resources ensures the fidelity and applicability of these innovative platforms in several biomedical applications. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

10 pages, 1551 KiB  
Article
Antibacterial Effect of Ozone on Cariogenic Bacteria and Its Potential Prejudicial Effect on Dentin Bond Strength—An In Vitro Study
by Marta Santos, Flávia Leandro, Helena Barroso, António H. S. Delgado, Luís Proença, Mário Polido and Joana Vasconcelos e Cruz
Pharmaceutics 2024, 16(5), 614; https://doi.org/10.3390/pharmaceutics16050614 - 02 May 2024
Viewed by 229
Abstract
Ozone is increasingly utilized in dental caries treatment due to its antibacterial properties. In a context of limited studies and no consensus on protocols, this research aims to assess ozone’s antibacterial efficacy on cariogenic bacteria and its potential adverse impact on dentin bond [...] Read more.
Ozone is increasingly utilized in dental caries treatment due to its antibacterial properties. In a context of limited studies and no consensus on protocols, this research aims to assess ozone’s antibacterial efficacy on cariogenic bacteria and its potential adverse impact on dentin bond strength. Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, and Actinomyces naeslundii suspensions were exposed to 40 μg/mL of ozone gas and 60 μg/mL of ozonated water (80 s) via a medical ozone generator. Negative and positive control groups (chlorhexidine 2%) were included, and UFC/mL counts were recorded. To examine microtensile bond strength (µTBS), 20 human molars were divided into four groups, and class I cavities were created. After ozone application, samples were restored using an etch-and-rinse and resin composite, then sectioned for testing. The SPSS v. 28 program was used with a significance level of 5%. The µTBS results were evaluated using one-way ANOVA, Tukey HSD, and Games-Howell. Bacterial counts reduced from 106 to 101, but dentin µTBS was significantly impacted by ozone (ANOVA, p < 0.001). Despite ozone’s attractive antibacterial activity, this study emphasizes its detrimental effect on dentin adhesion, cautioning against its use before restorative treatments. Full article
Show Figures

Figure 1

15 pages, 4402 KiB  
Article
Ligand- and Structure-Based Virtual Screening Identifies New Inhibitors of the Interaction of the SARS-CoV-2 Spike Protein with the ACE2 Host Receptor
by Timoteo Delgado-Maldonado, Alonzo González-González, Adriana Moreno-Rodríguez, Virgilio Bocanegra-García, Ana Verónica Martinez-Vazquez, Erick de Jesús de Luna-Santillana, Gerard Pujadas, Guadalupe Rojas-Verde, Edgar E. Lara-Ramírez and Gildardo Rivera
Pharmaceutics 2024, 16(5), 613; https://doi.org/10.3390/pharmaceutics16050613 - 01 May 2024
Viewed by 409
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a fast-spreading viral pathogen and poses a serious threat to human health. New SARS-CoV-2 variants have been arising worldwide; therefore, is necessary to explore more therapeutic options. The interaction of the viral spike (S) [...] Read more.
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a fast-spreading viral pathogen and poses a serious threat to human health. New SARS-CoV-2 variants have been arising worldwide; therefore, is necessary to explore more therapeutic options. The interaction of the viral spike (S) protein with the angiotensin-converting enzyme 2 (ACE2) host receptor is an attractive drug target to prevent the infection via the inhibition of virus cell entry. In this study, Ligand- and Structure-Based Virtual Screening (LBVS and SBVS) was performed to propose potential inhibitors capable of blocking the S receptor-binding domain (RBD) and ACE2 interaction. The best five lead compounds were confirmed as inhibitors through ELISA-based enzyme assays. The docking studies and molecular dynamic (MD) simulations of the selected compounds maintained the molecular interaction and stability (RMSD fluctuations less than 5 Å) with key residues of the S protein. The compounds DRI-1, DRI-2, DRI-3, DRI-4, and DRI-5 efficiently block the interaction between the SARS-CoV-2 spike protein and receptor ACE2 (from 69.90 to 99.65% of inhibition) at 50 µM. The most potent inhibitors were DRI-2 (IC50 = 8.8 µM) and DRI-3 (IC50 = 2.1 µM) and have an acceptable profile of cytotoxicity (CC50 > 90 µM). Therefore, these compounds could be good candidates for further SARS-CoV-2 preclinical experiments. Full article
Show Figures

Figure 1

12 pages, 2639 KiB  
Article
Natural Phytochemical and Visible Light at Different Wavelengths Show Synergistic Antibacterial Activity against Staphylococcus aureus
by Jae-Young Jeong and You-Jin Hwang
Pharmaceutics 2024, 16(5), 612; https://doi.org/10.3390/pharmaceutics16050612 - 01 May 2024
Viewed by 252
Abstract
As the risk of antibiotic-resistant bacteria increases, interest in non-antibiotic treatment is also increasing. Among the methods used in non-antibiotic therapy, natural antibiotics such as essential oils have disadvantages such as low efficiency. In the case of phototherapy, the light used for antibacterial [...] Read more.
As the risk of antibiotic-resistant bacteria increases, interest in non-antibiotic treatment is also increasing. Among the methods used in non-antibiotic therapy, natural antibiotics such as essential oils have disadvantages such as low efficiency. In the case of phototherapy, the light used for antibacterial activities has low penetration into the human body because of its short wavelength, making it of low medical utility. To solve this problem, this study aimed to determine conditions for enhancing the antibacterial activity of natural phytochemicals and visible light. Four natural phytochemical extracts that showed high antibacterial properties in previous studies were analyzed. Synergistic effects on antibacterial activity and cytotoxicity were determined when natural phytochemical extracts and visible light were simultaneously used. As a result, it was confirmed that the antibacterial activity increased by four times when Sanguisorba officinalis L. was irradiated with 465 nm for 10 min and 520 nm for 40 min, and Uncaria gambir Roxb. was irradiated with 465 nm for 10 min and 520 nm for 60 min compared to when Sanguisorba officinalis L. and Uncaria gambir Roxb. were used alone. The synergistic effect on antibacterial activity was independent of the absorption peak of the natural phytochemical extracts. In addition, in the case of natural phytochemical extracts with improved antibacterial activity, it was confirmed that the improvement of antibacterial activity was increased in inverse proportion to the light irradiation wavelength and in proportion to the light irradiation time. The antibacterial activity was enhanced regardless of antibiotic resistance. In the case of cytotoxicity, it was confirmed that there was no toxicity to A549 cells when treated with 465 nm, the shortest wavelength among the natural phytochemical extracts. These results show how to replace blue light, which has been underutilized due to its low transmittance and cytotoxicity. They also demonstrate the high medical potential of using natural phytochemical and visible light as a combination therapy. Full article
(This article belongs to the Special Issue Natural Products in Photodynamic Therapy)
Show Figures

Figure 1

13 pages, 539 KiB  
Article
The Role of a Cholecystokinin Receptor Antagonist in the Management of Chronic Pancreatitis: A Phase 1 Trial
by Victor Ciofoaia, Wenqiang Chen, Bakain W. Tarek, Martha Gay, Narayan Shivapurkar and Jill P. Smith
Pharmaceutics 2024, 16(5), 611; https://doi.org/10.3390/pharmaceutics16050611 - 30 Apr 2024
Viewed by 367
Abstract
Chronic pancreatitis (CP) is a rare but debilitating condition with an 8-fold increased risk of developing pancreatic cancer. In addition to the symptoms that come from the loss of endocrine and exocrine function in CP, the management of chronic pain is problematic. We [...] Read more.
Chronic pancreatitis (CP) is a rare but debilitating condition with an 8-fold increased risk of developing pancreatic cancer. In addition to the symptoms that come from the loss of endocrine and exocrine function in CP, the management of chronic pain is problematic. We previously showed that the CCK-receptor antagonist called proglumide could decrease inflammation, acinar-ductal metaplasia, and fibrosis in murine models of CP. We hypothesized that proglumide would be safe and diminish pain caused by CP. A Phase 1 open-labeled safety study was performed in subjects with clinical and radiographic evidence of CP with moderate to severe pain. After a 4-week observation period, the subjects were treated with proglumide in 400 mg capsules three times daily (1200 mg per day) by mouth for 12 weeks, followed by 4 weeks of observation after discontinuation for safety. The results of three pain surveys (Numeric Rating Scale, COMPAT-SF, and NIH PROMIS) showed that the patients had significantly less pain after 12 weeks of proglumide compared to the pre-treatment observation phase. Of the eight subjects in this study, two experienced nausea and diarrhea with proglumide. These side effects resolved in one subject with doses reduced to 800 mg per day. No abnormalities were noted in the blood chemistries. A blood microRNA blood biomarker panel that corresponded to pancreatic inflammation and fibrosis showed significant improvement. We conclude that proglumide is safe and well tolerated in most subjects with CP at a dose of 1200 mg per day. Furthermore, proglumide therapy may have a beneficial effect by decreasing pain associated with CP. Full article
(This article belongs to the Special Issue New Pharmaceutical Targets to Counteract Chronic Inflammation)
22 pages, 1047 KiB  
Article
General Direct Anticancer Effects of Deer Growing Antler Extract in Several Tumour Cell Lines, and Immune System-Mediated Effects in Xenograft Glioblastoma
by Alessandra Rossetti, Louis Chonco, Nicolas Alegría, Veronica Zelli, Andrés J. García, Carmen Ramírez-Castillejo, Alessandra Tessitore, Carlos de Cabo, Tomás Landete-Castillejos and Claudio Festuccia
Pharmaceutics 2024, 16(5), 610; https://doi.org/10.3390/pharmaceutics16050610 - 30 Apr 2024
Viewed by 259
Abstract
Deer antlers are the fastest growing tissue. Because they are based on proto-oncogenes, to avoid the risk of cancer, antlers evolved strong anticancer mechanisms, and thus their extract (DVA) is effective also against the few human tumours studied so far. We assessed whether [...] Read more.
Deer antlers are the fastest growing tissue. Because they are based on proto-oncogenes, to avoid the risk of cancer, antlers evolved strong anticancer mechanisms, and thus their extract (DVA) is effective also against the few human tumours studied so far. We assessed whether DVA is a general anticancer compound by testing the direct effects in cells of different tumours: glioblastoma (GBM; lines U87MG and U251), colorectal (CRC; lines DLD-1, HT-29, SW480, and SW620), breast cancer (BRCA; lines MCF7, SKBR3, and PA00), and leukaemia (THP-1). DVA reduced the viability of tumours but not healthy cells (NHC; lines 293T and HaCaT). Mobility decreased at least for the longest test (72 h). Intraperitoneal/oral 200 mg DVA/kg administration in GBM xenograft mice for 28 d reduced tumour weight by 66.3% and 61.4% respectively, and it also reduced spleen weight (43.8%). In addition, tumours treated with DVA showed symptoms of liquefactive necrosis. Serum cytokines showed DVA up-regulated factors related to tumour fighting and down-regulated those related to inducing immune tolerance to the tumour. DVA shows general anticancer effects in the lines tested and, in GBM mice, also strong indirect effects apparently mediated by the immune system. DVA may contain a future anticancer medicine without secondary effects. Full article
39 pages, 2225 KiB  
Review
Nonintuitive Immunogenicity and Plasticity of Alpha-Synuclein Conformers: A Paradigm for Smart Delivery of Neuro-Immunotherapeutics
by Amos Abioye, Damilare Akintade, James Mitchell, Simisade Olorode and Adeboye Adejare
Pharmaceutics 2024, 16(5), 609; https://doi.org/10.3390/pharmaceutics16050609 - 30 Apr 2024
Viewed by 281
Abstract
: Despite the extensive research successes and continuous developments in modern medicine in terms of diagnosis, prevention, and treatment, the lack of clinically useful disease-modifying drugs or immunotherapeutic agents that can successfully treat or prevent neurodegenerative diseases is an ongoing challenge. To date, [...] Read more.
: Despite the extensive research successes and continuous developments in modern medicine in terms of diagnosis, prevention, and treatment, the lack of clinically useful disease-modifying drugs or immunotherapeutic agents that can successfully treat or prevent neurodegenerative diseases is an ongoing challenge. To date, only one of the 244 drugs in clinical trials for the treatment of neurodegenerative diseases has been approved in the past decade, indicating a failure rate of 99.6%. In corollary, the approved monoclonal antibody did not demonstrate significant cognitive benefits. Thus, the prevalence of neurodegenerative diseases is increasing rapidly. Therefore, there is an urgent need for creative approaches to identifying and testing biomarkers for better diagnosis, prevention, and disease-modifying strategies for the treatment of neurodegenerative diseases. Overexpression of the endogenous α-synuclein has been identified as the driving force for the formation of the pathogenic α-synuclein (α-Syn) conformers, resulting in neuroinflammation, hypersensitivity, endogenous homeostatic responses, oxidative dysfunction, and degeneration of dopaminergic neurons in Parkinson’s disease (PD). However, the conformational plasticity of α-Syn proffers that a certain level of α-Syn is essential for the survival of neurons. Thus, it exerts both neuroprotective and neurotoxic (regulatory) functions on neighboring neuronal cells. Furthermore, the aberrant metastable α-Syn conformers may be subtle and difficult to detect but may trigger cellular and molecular events including immune responses. It is well documented in literature that the misfolded α-Syn and its conformers that are released into the extracellular space from damaged or dead neurons trigger the innate and adaptive immune responses in PD. Thus, in this review, we discuss the nonintuitive plasticity and immunogenicity of the α-Syn conformers in the brain immune cells and their physiological and pathological consequences on the neuroimmune responses including neuroinflammation, homeostatic remodeling, and cell-specific interactions that promote neuroprotection in PD. We also critically reviewed the novel strategies for immunotherapeutic delivery interventions in PD pathogenesis including immunotherapeutic targets and potential nanoparticle-based smart drug delivery systems. It is envisioned that a greater understanding of the nonintuitive immunogenicity of aberrant α-Syn conformers in the brain’s microenvironment would provide a platform for identifying valid therapeutic targets and developing smart brain delivery systems for clinically effective disease-modifying immunotherapeutics that can aid in the prevention and treatment of PD in the future. Full article
17 pages, 2196 KiB  
Article
Biological Response Following the Systemic Injection of PEG–PAMAM–Rhodamine Conjugates in Zebrafish
by Beatriz Custódio, Patrícia Carneiro, Joana Marques, Victoria Leiro, Ana M. Valentim, Mafalda Sousa, Sofia D. Santos, José Bessa and Ana P. Pêgo
Pharmaceutics 2024, 16(5), 608; https://doi.org/10.3390/pharmaceutics16050608 - 30 Apr 2024
Viewed by 317
Abstract
Numerous therapeutic and diagnostic approaches used within a clinical setting depend on the administration of compounds via systemic delivery. Biomaterials at the nanometer scale, as dendrimers, act as delivery systems by improving cargo bioavailability, circulation time, and the targeting of specific tissues. Although [...] Read more.
Numerous therapeutic and diagnostic approaches used within a clinical setting depend on the administration of compounds via systemic delivery. Biomaterials at the nanometer scale, as dendrimers, act as delivery systems by improving cargo bioavailability, circulation time, and the targeting of specific tissues. Although evaluating the efficacy of pharmacological agents based on nanobiomaterials is crucial, conducting toxicological assessments of biomaterials is essential for advancing clinical translation. Here, a zebrafish larvae model was explored to assess the biocompatibility of poly(amido amine) (PAMAM), one of the most exploited dendrimers for drug delivery. We report the impact of a systemic injection of polyethylene glycol (PEG)-modified G4 PAMAM conjugated with rhodamine (Rho) as a mimetic drug (PEG–PAMAM–Rho) on survival, animal development, inflammation, and neurotoxicity. A concentration- and time-dependent effect was observed on mortality, developmental morphology, and innate immune system activation (macrophages). Significant effects in toxicological indicators were reported in the highest tested concentration (50 mg/mL PEG–PAMAM–Rho) as early as 48 h post-injection. Additionally, a lower concentration of PEG–PAMAM–Rho (5 mg/mL) was found to be safe and subsequently tested for neurotoxicity through behavioral assays. In accordance, no significative signs of toxicity were detected. In conclusion, the dose response of the animal was assessed, and the safe dosage for future use in theragnostics was defined. Additionally, new methodologies were established that can be adapted to further studies in toxicology using other nanosystems for systemic delivery. Full article
Show Figures

Graphical abstract

Back to TopTop