Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Journal = Signals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1470 KiB  
Review
Approaching Electroencephalographic Pathological Spikes in Terms of Solitons
by Arturo Tozzi
Signals 2024, 5(2), 281-295; https://doi.org/10.3390/signals5020015 - 01 May 2024
Viewed by 469
Abstract
A delicate balance between dissipative and nonlinear forces allows traveling waves termed solitons to preserve their shape and energy for long distances without steepening and flattening out. Solitons are so widespread that they can generate both destructive waves on oceans’ surfaces and noise-free [...] Read more.
A delicate balance between dissipative and nonlinear forces allows traveling waves termed solitons to preserve their shape and energy for long distances without steepening and flattening out. Solitons are so widespread that they can generate both destructive waves on oceans’ surfaces and noise-free message propagation in silica optic fibers. They are naturally observed or artificially produced in countless physical systems at very different coarse-grained scales, from solar winds to Bose–Einstein condensates. We hypothesize that some of the electric oscillations detectable by scalp electroencephalography (EEG) could be assessed in terms of solitons. A nervous spike must fulfill strict mathematical and physical requirements to be termed a soliton. They include the proper physical parameters like wave height, horizontal distance and unchanging shape; the appropriate nonlinear wave equations’ solutions and the correct superposition between sinusoidal and non-sinusoidal waves. After a thorough analytical comparison with the EEG traces available in the literature, we argue that solitons bear striking similarities with the electric activity recorded from medical conditions like epilepsies and encephalopathies. Emerging from the noisy background of the normal electric activity, high-amplitude, low-frequency EEG soliton-like pathological waves with relatively uniform morphology and duration can be observed, characterized by repeated, stereotyped patterns propagating on the hemispheric surface of the brain over relatively large distances. Apart from the implications for the study of cognitive activities in the healthy brain, the theoretical possibility to treat pathological brain oscillations in terms of solitons has powerful operational implications, suggesting new therapeutical options to counteract their detrimental effects. Full article
(This article belongs to the Special Issue Advancing Signal Processing and Analytics of EEG Signals)
Show Figures

Figure 1

17 pages, 2266 KiB  
Article
CNN-Based Pattern Classifiers for Precise Identification of Perinatal EEG Biomarkers of Brain Injury in Preterm Neonates
by Hamid Abbasi, Malcolm R. Battin, Deborah Rowe, Robyn Butler, Alistair J. Gunn and Laura Bennet
Signals 2024, 5(2), 264-280; https://doi.org/10.3390/signals5020014 - 28 Apr 2024
Viewed by 291
Abstract
Electroencephalographic (EEG) monitoring is important for the diagnosis of hypoxic-ischemic (HI) brain injury in high-risk preterm infants. EEG monitoring is limited by the reliance on expert clinical observation. However, high-risk preterm infants often do not present observable symptoms due to their frailty. Thus, [...] Read more.
Electroencephalographic (EEG) monitoring is important for the diagnosis of hypoxic-ischemic (HI) brain injury in high-risk preterm infants. EEG monitoring is limited by the reliance on expert clinical observation. However, high-risk preterm infants often do not present observable symptoms due to their frailty. Thus, there is an urgent need to find better ways to automatically quantify changes in the EEG these high-risk babies. This article is a first step towards this goal. This innovative study demonstrates the effectiveness of deep Convolutional Neural Networks (CNN) pattern classifiers, trained on spectrally-detailed Wavelet Scalograms (WS) images derived from neonatal EEG sharp waves—a potential translational HI biomarker, at birth. The WS-CNN classifiers exhibit outstanding performance in identifying HI sharp waves within an exclusive clinical EEG recordings dataset of preterm infants immediately after birth. The work has impact as it demonstrates exceptional high accuracy of 99.34 ± 0.51% cross-validated across 13,624 EEG patterns over 48 h raw EEG at low 256 Hz clinical sampling rates. Furthermore, the WS-CNN pattern classifier is able to accurately identify the sharp-waves within the most critical first hours of birth (n = 8, 4:36 ± 1:09 h), regardless of potential morphological changes influenced by different treatments/drugs or the evolutionary ‘timing effects’ of the injury. This underscores its reliability as a tool for the identification and quantification of clinical EEG sharp-wave biomarkers at bedside. Full article
(This article belongs to the Special Issue Advancing Signal Processing and Analytics of EEG Signals)
Show Figures

Figure 1

20 pages, 2321 KiB  
Review
A Systematic Review of Electroencephalography-Based Emotion Recognition of Confusion Using Artificial Intelligence
by Dasuni Ganepola, Madduma Wellalage Pasan Maduranga, Valmik Tilwari and Indika Karunaratne
Signals 2024, 5(2), 244-263; https://doi.org/10.3390/signals5020013 - 25 Apr 2024
Viewed by 342
Abstract
Confusion emotion in a learning environment can motivate the learner, but prolonged confusion hinders the learning process. Recognizing confused learners is possible; nevertheless, finding them requires a lot of time and effort. Due to certain restrictions imposed by the settings of an online [...] Read more.
Confusion emotion in a learning environment can motivate the learner, but prolonged confusion hinders the learning process. Recognizing confused learners is possible; nevertheless, finding them requires a lot of time and effort. Due to certain restrictions imposed by the settings of an online learning environment, the recognition of confused students is a big challenge for educators. Therefore, novel technologies are necessary to handle such crucial difficulties. Lately, Electroencephalography (EEG)-based emotion recognition systems have been rising in popularity in the domain of Education Technology. Such systems have been utilized to recognize the confusion emotion of learners. Numerous studies have been conducted to recognize confusion emotion through this system since 2013, and because of this, a systematic review of the methodologies, feature sets, and utilized classifiers is a timely necessity. This article presents the findings of the review conducted to achieve this requirement. We summarized the published literature in terms of the utilized datasets, feature preprocessing, feature types for model training, and deployed classifiers in terms of shallow machine learning and deep learning-based algorithms. Moreover, the article presents a comparison of the prediction accuracies of the classifiers and illustrates the existing research gaps in confusion emotion recognition systems. Future study directions for potential research are also suggested to overcome existing gaps. Full article
Show Figures

Figure 1

28 pages, 519 KiB  
Article
Learning with Errors: A Lattice-Based Keystone of Post-Quantum Cryptography
by Maria E. Sabani, Ilias K. Savvas and Georgia Garani
Signals 2024, 5(2), 216-243; https://doi.org/10.3390/signals5020012 - 13 Apr 2024
Viewed by 571
Abstract
The swift advancement of quantum computing devices holds the potential to create robust machines that can tackle an extensive array of issues beyond the scope of conventional computers. Consequently, quantum computing machines create new risks at a velocity and scale never seen before, [...] Read more.
The swift advancement of quantum computing devices holds the potential to create robust machines that can tackle an extensive array of issues beyond the scope of conventional computers. Consequently, quantum computing machines create new risks at a velocity and scale never seen before, especially with regard to encryption. Lattice-based cryptography is regarded as post-quantum cryptography’s future and a competitor to a quantum computer attack. Thus, there are several advantages to lattice-based cryptographic protocols, including security, effectiveness, reduced energy usage and speed. In this work, we study the learning with errors (LWE) problem and the cryptosystems that are based on the LWE problem and, in addition, we present a new efficient variant of LWE cryptographic scheme. Full article
Show Figures

Figure 1

14 pages, 2693 KiB  
Article
Optimizing Dynamic Mode Decomposition for Video Denoising via Plug-and-Play Alternating Direction Method of Multipliers
by Hyoga Yamamoto, Shunki Anami and Ryo Matsuoka
Signals 2024, 5(2), 202-215; https://doi.org/10.3390/signals5020011 - 01 Apr 2024
Viewed by 453
Abstract
Dynamic mode decomposition (DMD) is a powerful tool for separating the background and foreground in videos. This algorithm decomposes a video into dynamic modes, called DMD modes, to facilitate the extraction of the near-zero mode, which represents the stationary background. Simultaneously, it captures [...] Read more.
Dynamic mode decomposition (DMD) is a powerful tool for separating the background and foreground in videos. This algorithm decomposes a video into dynamic modes, called DMD modes, to facilitate the extraction of the near-zero mode, which represents the stationary background. Simultaneously, it captures the evolving motion in the remaining modes, which correspond to the moving foreground components. However, when applied to noisy video, this separation leads to degradation of the background and foreground components, primarily due to the noise-induced degradation of the DMD mode. This paper introduces a novel noise removal method for the DMD mode in noisy videos. Specifically, we formulate a minimization problem that reduces the noise in the DMD mode and the reconstructed video. The proposed problem is solved using an algorithm based on the plug-and-play alternating direction method of multipliers (PnP-ADMM). We applied the proposed method to several video datasets with different levels of artificially added Gaussian noise in the experiment. Our method consistently yielded superior results in quantitative evaluations using peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) compared to naive noise removal methods. In addition, qualitative comparisons confirmed that our method can restore higher-quality videos than the naive methods. Full article
Show Figures

Figure 1

21 pages, 497 KiB  
Article
Large Language Model-Informed X-ray Photoelectron Spectroscopy Data Analysis
by J. de Curtò, I. de Zarzà, Gemma Roig and Carlos T. Calafate
Signals 2024, 5(2), 181-201; https://doi.org/10.3390/signals5020010 - 27 Mar 2024
Viewed by 519
Abstract
X-ray photoelectron spectroscopy (XPS) remains a fundamental technique in materials science, offering invaluable insights into the chemical states and electronic structure of a material. However, the interpretation of XPS spectra can be complex, requiring deep expertise and often sophisticated curve-fitting methods. In this [...] Read more.
X-ray photoelectron spectroscopy (XPS) remains a fundamental technique in materials science, offering invaluable insights into the chemical states and electronic structure of a material. However, the interpretation of XPS spectra can be complex, requiring deep expertise and often sophisticated curve-fitting methods. In this study, we present a novel approach to the analysis of XPS data, integrating the utilization of large language models (LLMs), specifically OpenAI’s GPT-3.5/4 Turbo to provide insightful guidance during the data analysis process. Working in the framework of the CIRCE-NAPP beamline at the CELLS ALBA Synchrotron facility where data are obtained using ambient pressure X-ray photoelectron spectroscopy (APXPS), we implement robust curve-fitting techniques on APXPS spectra, highlighting complex cases including overlapping peaks, diverse chemical states, and noise presence. Post curve fitting, we engage the LLM to facilitate the interpretation of the fitted parameters, leaning on its extensive training data to simulate an interaction corresponding to expert consultation. The manuscript presents also a real use case utilizing GPT-4 and Meta’s LLaMA-2 and describes the integration of the functionality into the TANGO control system. Our methodology not only offers a fresh perspective on XPS data analysis, but also introduces a new dimension of artificial intelligence (AI) integration into scientific research. It showcases the power of LLMs in enhancing the interpretative process, particularly in scenarios wherein expert knowledge may not be immediately available. Despite the inherent limitations of LLMs, their potential in the realm of materials science research is promising, opening doors to a future wherein AI assists in the transformation of raw data into meaningful scientific knowledge. Full article
Show Figures

Figure 1

16 pages, 3607 KiB  
Review
A Review of Recent Advancements in Knock Detection in Spark Ignition Engines
by Vikram Mittal
Signals 2024, 5(1), 165-180; https://doi.org/10.3390/signals5010009 - 21 Mar 2024
Viewed by 729
Abstract
In gasoline engines, the combustion process involves a flame’s propagation from the spark plug to the cylinder walls, resulting in the localized heating and pressurization of the cylinder content ahead of the flame, which can lead to the autoignition of the gasoline and [...] Read more.
In gasoline engines, the combustion process involves a flame’s propagation from the spark plug to the cylinder walls, resulting in the localized heating and pressurization of the cylinder content ahead of the flame, which can lead to the autoignition of the gasoline and air. The energy release from the autoignition event causes the engine cylinder to resonate, causing an unpleasant noise and eventual engine damage. This process is termed as knock. Avoiding knock has resulted in limiting the maximum engine pressures, and hence limiting the maximum efficiencies of the engine. Modern engines employ knock sensors to detect resonances, adjusting the spark plug timing to reduce pressures and temperatures, albeit at the expense of engine performance. This paper sets out to review the different signals that can be measured from an engine to detect the start of knock. These signals traditionally consist of the in-cylinder pressure, the vibrations of the engine block, and acoustic noise. This paper reviews each of these techniques, with a focus on recent advances. A number of novel methods are also presented, including identifying perturbations in the engine speed or exhaust temperature; measuring the ion charge across the spark plug leads; and using artificial intelligence to build models based on engine conditions. Each of these approaches is also reviewed and compared to the more traditional approaches. This review finds that in-cylinder pressure measurements remain as the most accurate for detecting knock in modern engines; however, their usage is limited to research settings. Meanwhile, new sensors and processing techniques for vibration measurements will more accurately detect knock in modern vehicles in the short term. Acoustic measurements and other novel approaches are showing promise in the long term. Full article
Show Figures

Figure 1

18 pages, 4627 KiB  
Article
ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes
by Pierre-Etienne Martin
Signals 2024, 5(1), 147-164; https://doi.org/10.3390/signals5010008 - 15 Mar 2024
Viewed by 466
Abstract
The ApeTI dataset was built with the aim of retrieving physiological signals such as heart rate, breath rate, and cognitive load from thermal images of great apes. We want to develop computer vision tools that psychologists and animal behavior researchers can use to [...] Read more.
The ApeTI dataset was built with the aim of retrieving physiological signals such as heart rate, breath rate, and cognitive load from thermal images of great apes. We want to develop computer vision tools that psychologists and animal behavior researchers can use to retrieve physiological signals noninvasively. Our goal is to increase the use of a thermal imaging modality in the community and avoid using more invasive recording methods to answer research questions. The first step to retrieving physiological signals from thermal imaging is their spatial segmentation to then analyze the time series of the regions of interest. For this purpose, we present a thermal imaging dataset based on recordings of chimpanzees with their face and nose annotated using a bounding box and nine landmarks. The face and landmarks’ locations can then be used to extract physiological signals. The dataset was acquired using a thermal camera at the Leipzig Zoo. Juice was provided in the vicinity of the camera to encourage the chimpanzee to approach and have a good view of the face. Several computer vision methods are presented and evaluated on this dataset. We reach mAPs of 0.74 for face detection and 0.98 for landmark estimation using our proposed combination of the Tifa and Tina models inspired by the HRNet models. A proof of concept of the model is presented for physiological signal retrieval but requires further investigation to be evaluated. The dataset and the implementation of the Tina and Tifa models are available to the scientific community for performance comparison or further applications. Full article
Show Figures

Figure 1

29 pages, 11556 KiB  
Article
A Complete Pipeline for Heart Rate Extraction from Infant ECGs
by Harry T. Mason, Astrid Priscilla Martinez-Cedillo, Quoc C. Vuong, Maria Carmen Garcia-de-Soria, Stephen Smith, Elena Geangu and Marina I. Knight
Signals 2024, 5(1), 118-146; https://doi.org/10.3390/signals5010007 - 13 Mar 2024
Cited by 1 | Viewed by 897
Abstract
Infant electrocardiograms (ECGs) and heart rates (HRs) are very useful biosignals for psychological research and clinical work, but can be hard to analyse properly, particularly longform (≥5 min) recordings taken in naturalistic environments. Infant HRs are typically much faster than adult HRs, and [...] Read more.
Infant electrocardiograms (ECGs) and heart rates (HRs) are very useful biosignals for psychological research and clinical work, but can be hard to analyse properly, particularly longform (≥5 min) recordings taken in naturalistic environments. Infant HRs are typically much faster than adult HRs, and so some of the underlying frequency assumptions made about adult ECGs may not hold for infants. However, the bulk of publicly available ECG approaches focus on adult data. Here, existing open source ECG approaches are tested on infant datasets. The best-performing open source method is then modified to maximise its performance on infant data (e.g., including a 15 Hz high-pass filter, adding local peak correction). The HR signal is then subsequently analysed, developing an approach for cleaning data with separate sets of parameters for the analysis of cleaner and noisier HRs. A Signal Quality Index (SQI) for HR is also developed, providing insights into where a signal is recoverable and where it is not, allowing for more confidence in the analysis performed on naturalistic recordings. The tools developed and reported in this paper provide a base for the future analysis of infant ECGs and related biophysical characteristics. Of particular importance, the proposed solutions outlined here can be efficiently applied to real-world, large datasets. Full article
Show Figures

Figure 1

13 pages, 4542 KiB  
Article
Study of Time–Frequency Domain of Acoustic Emission Precursors in Rock Failure during Uniaxial Compression
by Gang Jing, Pedro Marin Montanari and Giuseppe Lacidogna
Signals 2024, 5(1), 105-117; https://doi.org/10.3390/signals5010006 - 29 Feb 2024
Viewed by 467
Abstract
Predicting rock bursts is essential for maintaining worker safety and the long-term growth of subsurface infrastructure. The purpose of this study is to investigate the precursor reactions and processes of rock instability. To determine the degree of rock damage, the research examines the [...] Read more.
Predicting rock bursts is essential for maintaining worker safety and the long-term growth of subsurface infrastructure. The purpose of this study is to investigate the precursor reactions and processes of rock instability. To determine the degree of rock damage, the research examines the time-varying acoustic emission (AE) features that occur when rocks are compressed uniaxially and introduces AE parameters such as the b-value, γ-value, and βt-value. The findings suggest that the evolution of rock damage during loading is adequately reflected by the b-value, γ-value, and βt-value. The relationships between b-value, γ-value, and βt-value are studied, as well as the possibility of using these three metrics as early-warning systems for rock failure. Full article
Show Figures

Figure 1

18 pages, 2663 KiB  
Article
Object Detection with Hyperparameter and Image Enhancement Optimisation for a Smart and Lean Pick-and-Place Solution
by Elven Kee, Jun Jie Chong, Zi Jie Choong and Michael Lau
Signals 2024, 5(1), 87-104; https://doi.org/10.3390/signals5010005 - 26 Feb 2024
Viewed by 623
Abstract
Pick-and-place operations are an integral part of robotic automation and smart manufacturing. By utilizing deep learning techniques on resource-constraint embedded devices, the pick-and-place operations can be made more accurate, efficient, and sustainable, compared to the high-powered computer solution. In this study, we propose [...] Read more.
Pick-and-place operations are an integral part of robotic automation and smart manufacturing. By utilizing deep learning techniques on resource-constraint embedded devices, the pick-and-place operations can be made more accurate, efficient, and sustainable, compared to the high-powered computer solution. In this study, we propose a new technique for object detection on an embedded system using SSD Mobilenet V2 FPN Lite with the optimisation of the hyperparameter and image enhancement. By increasing the Red Green Blue (RGB) saturation level of the images, we gain a 7% increase in mean Average Precision (mAP) when compared to the control group and a 20% increase in mAP when compared to the COCO 2017 validation dataset. Using a Learning Rate of 0.08 with an Edge Tensor Processing Unit (TPU), we obtain high real-time detection scores of 97%. The high detection scores are important to the control algorithm, which uses the bounding box to send a signal to the collaborative robot for pick-and-place operation. Full article
Show Figures

Figure 1

27 pages, 15255 KiB  
Article
Investigation of LASSO Regression Method as a Correction Measurements’ Factor for Low-Cost Air Quality Sensors
by Ioannis Christakis, Elena Sarri, Odysseas Tsakiridis and Ilias Stavrakas
Signals 2024, 5(1), 60-86; https://doi.org/10.3390/signals5010004 - 02 Feb 2024
Cited by 2 | Viewed by 615
Abstract
Air quality is a subject of study, particularly in densely populated areas, as it has been shown to affect human health and the local ecosystem. In recent years, with the rapid development of technology, low-cost sensors have emerged, with many people interested in [...] Read more.
Air quality is a subject of study, particularly in densely populated areas, as it has been shown to affect human health and the local ecosystem. In recent years, with the rapid development of technology, low-cost sensors have emerged, with many people interested in the quality of the air in their area turning to the procurement of such sensors as they are affordable. The reliability of measurements from low-cost sensors remains a question in the research community. In this paper, the determination of the correction factor of low-cost sensor measurements by applying the least absolute shrinkage and selection operator (LASSO) regression method is investigated. The results are promising, as following the application of the correction factor determined through LASSO regression the adjusted measurements exhibit a closer alignment with the reference measurements. This approach ensures that the measurements from low-cost sensors become more reliable and trustworthy. Full article
Show Figures

Figure 1

20 pages, 6004 KiB  
Article
Online Detection and Fuzzy Clustering of Anomalies in Non-Stationary Time Series
by Changjiang He, David S. Leslie and James A. Grant
Signals 2024, 5(1), 40-59; https://doi.org/10.3390/signals5010003 - 24 Jan 2024
Cited by 1 | Viewed by 681
Abstract
We consider the challenge of detecting and clustering point and collective anomalies in streaming data that exhibit significant nonlinearities and seasonal structures. The challenge is motivated by detecting problems in a communications network, where we can measure the throughput of nodes, and wish [...] Read more.
We consider the challenge of detecting and clustering point and collective anomalies in streaming data that exhibit significant nonlinearities and seasonal structures. The challenge is motivated by detecting problems in a communications network, where we can measure the throughput of nodes, and wish to rapidly detect anomalous traffic behaviour. Our approach is to train a neural network-based nonlinear autoregressive exogenous model on initial training data, then to use the sequential collective and point anomaly framework to identify anomalies in the residuals generated by comparing one-step-ahead predictions of the fitted model with the observations, and finally, we cluster the detected anomalies with fuzzy c-means clustering using empirical cumulative distribution functions. The autoregressive model is sufficiently general and robust such that it provides the nearly (locally) stationary residuals required by the anomaly detection procedure. The combined methods are successfully implemented to create an adaptive, robust, computational framework that can be used to cluster point and collective anomalies in streaming data. We validate the method on both data from the core of the UK’s national communications network and the multivariate Skoltech anomaly benchmark and find that the proposed method succeeds in dealing with different forms of anomalies within the nonlinear signals and outperforms conventional methods for anomaly detection and clustering. Full article
Show Figures

Figure 1

22 pages, 3319 KiB  
Article
The Effect of Jittered Stimulus Onset Interval on Electrophysiological Markers of Attention in a Brain–Computer Interface Rapid Serial Visual Presentation Paradigm
by Daniel Klee, Tab Memmott and Barry Oken
Signals 2024, 5(1), 18-39; https://doi.org/10.3390/signals5010002 - 09 Jan 2024
Viewed by 819
Abstract
Brain responses to discrete stimuli are modulated when multiple stimuli are presented in sequence. These alterations are especially pronounced when the time course of an evoked response overlaps with responses to subsequent stimuli, such as in a rapid serial visual presentation (RSVP) paradigm [...] Read more.
Brain responses to discrete stimuli are modulated when multiple stimuli are presented in sequence. These alterations are especially pronounced when the time course of an evoked response overlaps with responses to subsequent stimuli, such as in a rapid serial visual presentation (RSVP) paradigm used to control a brain–computer interface (BCI). The present study explored whether the measurement or classification of select brain responses during RSVP would improve through application of an established technique for dealing with overlapping stimulus presentations, known as irregular or “jittered” stimulus onset interval (SOI). EEG data were collected from 24 healthy adult participants across multiple rounds of RSVP calibration and copy phrase tasks with varying degrees of SOI jitter. Analyses measured three separate brain signals sensitive to attention: N200, P300, and occipitoparietal alpha attenuation. Presentation jitter visibly reduced intrusion of the SSVEP, but in general, it did not positively or negatively affect attention effects, classification, or system performance. Though it remains unclear whether stimulus overlap is detrimental to BCI performance overall, the present study demonstrates that single-trial classification approaches may be resilient to rhythmic intrusions like SSVEP that appear in the averaged EEG. Full article
(This article belongs to the Special Issue Advancing Signal Processing and Analytics of EEG Signals)
Show Figures

Figure 1

17 pages, 934 KiB  
Article
Complex Parameter Rao and Wald Tests for Assessing the Bandedness of a Complex-Valued Covariance Matrix
by Zhenghan Zhu
Signals 2024, 5(1), 1-17; https://doi.org/10.3390/signals5010001 - 04 Jan 2024
Viewed by 540
Abstract
Banding the inverse of a covariance matrix has become a popular technique for estimating a covariance matrix from a limited number of samples. It is of interest to provide criteria to determine if a matrix is bandable, as well as to test the [...] Read more.
Banding the inverse of a covariance matrix has become a popular technique for estimating a covariance matrix from a limited number of samples. It is of interest to provide criteria to determine if a matrix is bandable, as well as to test the bandedness of a matrix. In this paper, we pose the bandedness testing problem as a hypothesis testing task in statistical signal processing. We then derive two detectors, namely the complex Rao test and the complex Wald test, to test the bandedness of a Cholesky-factor matrix of a covariance matrix’s inverse. Furthermore, in many signal processing fields, such as radar and communications, the covariance matrix and its parameters are often complex-valued; thus, it is of interest to focus on complex-valued cases. The first detector is based on the complex parameter Rao test theorem. It does not require the maximum likelihood estimates of unknown parameters under the alternative hypothesis. We also develop the complex parameter Wald test theorem for general cases and derive the complex Wald test statistic for the bandedness testing problem. Numerical examples and computer simulations are given to evaluate and compare the two detectors’ performance. In addition, we show that the two detectors and the generalized likelihood ratio test are equivalent for the important complex Gaussian linear models and provide an analysis of the root cause of the equivalence. Full article
Show Figures

Figure 1

Back to TopTop