Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,554)

Search Parameters:
Keywords = Influenza virus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3734 KiB  
Article
HACD3 Prevents PB1 from Autophagic Degradation to Facilitate the Replication of Influenza A Virus
by Qibing Li, Li Jiang, Yihan Wang, Xuwei Liu, Bo Wang, Zhibo Shan, Yi-Han Wang, Yuqin Wang, Hualan Chen and Chengjun Li
Viruses 2024, 16(5), 702; https://doi.org/10.3390/v16050702 (registering DOI) - 29 Apr 2024
Viewed by 125
Abstract
Influenza A virus (IAV) continues to pose serious threats to the global animal industry and public health security. Identification of critical host factors engaged in the life cycle of IAV and elucidation of the underlying mechanisms of their action are particularly important for [...] Read more.
Influenza A virus (IAV) continues to pose serious threats to the global animal industry and public health security. Identification of critical host factors engaged in the life cycle of IAV and elucidation of the underlying mechanisms of their action are particularly important for the discovery of potential new targets for the development of anti-influenza drugs. Herein, we identified Hydroxyacyl-CoA Dehydratase 3 (HACD3) as a new host factor that supports the replication of IAV. Downregulating the expression of HACD3 reduced the level of viral PB1 protein in IAV-infected cells and in cells that were transiently transfected to express PB1. Silencing HACD3 expression had no effect on the level of PB1 mRNA but could promote the lysosome-mediated autophagic degradation of PB1 protein. Further investigation revealed that HACD3 interacted with PB1 and selective autophagic receptor SQSTM1/p62, and HACD3 competed with SQSTM1/p62 for the interaction with PB1, which prevented PB1 from SQSTM1/p62-mediated autophagic degradation. Collectively, these findings establish that HACD3 plays a positive regulatory role in IAV replication by stabilizing the viral PB1 protein. Full article
Show Figures

Figure 1

17 pages, 3107 KiB  
Article
Genetic Diversity and Detection of Respiratory Viruses Excluding SARS-CoV-2 during the COVID-19 Pandemic in Gabon, 2020–2021
by Georgelin Nguema Ondo, Yuri Ushijima, Haruka Abe, Saïdou Mahmoudou, Rodrigue Bikangui, Anne Marie Nkoma, Marien Juliet Veraldy Magossou Mbadinga, Ayong More, Maradona Daouda Agbanrin, Christelle M. Pemba, Romuald Beh Mba, Adegnika Ayola Akim, Bertrand Lell and Jiro Yasuda
Viruses 2024, 16(5), 698; https://doi.org/10.3390/v16050698 (registering DOI) - 28 Apr 2024
Viewed by 152
Abstract
Acute respiratory infections are a major global burden in resource-limited countries, including countries in Africa. Although COVID-19 has been well studied since the pandemic emerged in Gabon, Central Africa, less attention has been paid to other respiratory viral diseases, and very little data [...] Read more.
Acute respiratory infections are a major global burden in resource-limited countries, including countries in Africa. Although COVID-19 has been well studied since the pandemic emerged in Gabon, Central Africa, less attention has been paid to other respiratory viral diseases, and very little data are available. Herein, we provide the first data on the genetic diversity and detection of 18 major respiratory viruses in Gabon during the COVID-19 pandemic. Of 582 nasopharyngeal swab specimens collected from March 2020 to July 2021, which were SARS-CoV-2 negative, 156 were positive (26%) for the following viruses: enterovirus (20.3%), human rhinovirus (HRV) (4.6%), human coronavirus OC43 (1.2%), human adenovirus (0.9%), human metapneumovirus (hMPV) (0.5%), influenza A virus (IAV) (0.3%), and human parainfluenza viruses (0.5%). To determine the genetic diversity and transmission route of the viruses, phylogenetic analyses were performed using genome sequences of the detected viruses. The IAV strain detected in this study was genetically similar to strains isolated in the USA, whereas the hMPV strain belonging to the A2b subtype formed a cluster with Kenyan strains. This study provides the first complete genomic sequences of HRV, IAV, and hMPV detected in Gabon, and provides insight into the circulation of respiratory viruses in the country. Full article
Show Figures

Figure 1

12 pages, 250 KiB  
Article
Attitude to Co-Administration of Influenza and COVID-19 Vaccines among Pregnant Women Exploring the Health Action Process Approach Model
by Alessandra Fallucca, Palmira Immordino, Patrizia Ferro, Luca Mazzeo, Sefora Petta, Antonio Maiorana, Marianna Maranto, Alessandra Casuccio and Vincenzo Restivo
Vaccines 2024, 12(5), 470; https://doi.org/10.3390/vaccines12050470 (registering DOI) - 28 Apr 2024
Viewed by 220
Abstract
Respiratory tract diseases caused by influenza virus and SARS-CoV-2 can represent a serious threat to the health of pregnant women. Immunological remodulation for fetus tolerance and physiological changes in the gestational chamber expose both mother and child to fearful complications and a high [...] Read more.
Respiratory tract diseases caused by influenza virus and SARS-CoV-2 can represent a serious threat to the health of pregnant women. Immunological remodulation for fetus tolerance and physiological changes in the gestational chamber expose both mother and child to fearful complications and a high risk of hospitalization. Vaccines to protect pregnant women from influenza and COVID-19 are strongly recommended and vaccine co-administration could be advantageous to increase coverage of both vaccines. The attitude to accept both vaccines is affected by several factors: social, cultural, and cognitive-behavioral. In Palermo, Italy, during the 2021–2022 influenza season, a cross-sectional study was conducted to evaluate pregnant women’s intention to adhere to co-administration of influenza and COVID-19 vaccines. The determinants of vaccination attitude were investigated through the administration of a questionnaire and the Health Action Process Approach theory was adopted to explore the cognitive behavioral aspects. Overall, 120 pregnant women were enrolled; mean age 32 years, 98.2% (n = 118) of Italian nationality and 25.2% (n = 30) with obstetric or pathological conditions of pregnancy at risk. Factors significantly associated with the attitude to co-administration of influenza and COVID-19 vaccines among pregnant women were: high level of education (OR = 13.96; p < 0.001), positive outcome expectations (OR = 2.84; p < 0.001), and self-efficacy (OR = 3.1; p < 0.001). Effective strategies to promote the co-administration of the influenza vaccine and the COVID-19 vaccine should be based on the communication of the benefits and positive outcomes of vaccine co-administration and on the adequate information of pregnant women. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
8 pages, 1755 KiB  
Brief Report
Influenza Virus Genomic Surveillance, Arizona, USA, 2023–2024
by Rabia Maqsood, Matthew F. Smith, LaRinda A. Holland, Regan A. Sullins, Steven C. Holland, Michelle Tan, Gabrielle M. Hernandez Barrera, Alexis W. Thomas, Mario Islas, Joanna L. Kramer, Lora Nordstrom, Mary Mulrow, Michael White, Vel Murugan and Efrem S. Lim
Viruses 2024, 16(5), 692; https://doi.org/10.3390/v16050692 (registering DOI) - 27 Apr 2024
Viewed by 271
Abstract
Influenza viruses are constantly evolving and are therefore monitored worldwide in the hope to reduce the burden of disease by annual updates to vaccine recommendations. We conducted genomic sequencing of 110 influenza A and 30 influenza B viruses from specimens collected between October [...] Read more.
Influenza viruses are constantly evolving and are therefore monitored worldwide in the hope to reduce the burden of disease by annual updates to vaccine recommendations. We conducted genomic sequencing of 110 influenza A and 30 influenza B viruses from specimens collected between October 2023 and February 2024 in Arizona, USA. We identified mutations in the hemagglutinin (HA) antigenic sites as well as the neuraminidase (NA) gene in our samples. We also found no unique HA and NA mutations in vaccinated yet influenza-infected individuals. Real-time genomic sequencing surveillance is important to ensure influenza vaccine effectiveness. Full article
Show Figures

Figure 1

20 pages, 3831 KiB  
Review
Triggering Degradation of Host Cellular Proteins for Robust Propagation of Influenza Viruses
by Chuan Xia, Ting Wang and Bumsuk Hahm
Int. J. Mol. Sci. 2024, 25(9), 4677; https://doi.org/10.3390/ijms25094677 - 25 Apr 2024
Viewed by 213
Abstract
Following infection, influenza viruses strive to establish a new host cellular environment optimized for efficient viral replication and propagation. Influenza viruses use or hijack numerous host factors and machinery not only to fulfill their own replication process but also to constantly evade the [...] Read more.
Following infection, influenza viruses strive to establish a new host cellular environment optimized for efficient viral replication and propagation. Influenza viruses use or hijack numerous host factors and machinery not only to fulfill their own replication process but also to constantly evade the host’s antiviral and immune response. For this purpose, influenza viruses appear to have formulated diverse strategies to manipulate the host proteins or signaling pathways. One of the most effective tactics is to specifically induce the degradation of the cellular proteins that are detrimental to the virus life cycle. Here, we summarize the cellular factors that are deemed to have been purposefully degraded by influenza virus infection. The focus is laid on the mechanisms for the protein ubiquitination and degradation in association with facilitated viral amplification. The fate of influenza viral infection of hosts is heavily reliant on the outcomes of the interplay between the virus and the host antiviral immunity. Understanding the processes of how influenza viruses instigate the protein destruction pathways could provide a foundation for the development of advanced therapeutics to target host proteins and conquer influenza. Full article
Show Figures

Figure 1

16 pages, 2891 KiB  
Article
Oxymatrine Modulation of TLR3 Signaling: A Dual-Action Mechanism for H9N2 Avian Influenza Virus Defense and Immune Regulation
by Yan Zhi, Xinping Zhao, Zhenyi Liu, Guoyu Shen, Taiming Zhang, Tao Zhang and Ge Hu
Molecules 2024, 29(9), 1945; https://doi.org/10.3390/molecules29091945 - 24 Apr 2024
Viewed by 251
Abstract
In our research, we explored a natural substance called Oxymatrine, found in a traditional Chinese medicinal plant, to fight against a common bird flu virus known as H9N2. This virus not only affects birds but can also pose a threat to human health. [...] Read more.
In our research, we explored a natural substance called Oxymatrine, found in a traditional Chinese medicinal plant, to fight against a common bird flu virus known as H9N2. This virus not only affects birds but can also pose a threat to human health. We focused on how this natural compound can help in stopping the virus from spreading in cells that line the lungs of birds and potentially humans. Our findings show that Oxymatrine can both directly block the virus and boost the body’s immune response against it. This dual-action mechanism is particularly interesting because it indicates that Oxymatrine might be a useful tool in developing new ways to prevent and treat this type of bird flu. Understanding how Oxymatrine works against the H9N2 virus could lead to safer and more natural ways to combat viral infections in animals and humans, contributing to the health and well-being of society. The H9N2 Avian Influenza Virus (AIV) is a persistent health threat because of its rapid mutation rate and the limited efficacy of vaccines, underscoring the urgent need for innovative therapies. This study investigated the H9N2 AIV antiviral properties of Oxymatrine (OMT), a compound derived from traditional Chinese medicine, particularly focusing on its interaction with pulmonary microvascular endothelial cells (PMVECs). Employing an array of in vitro assays, including 50% tissue culture infectious dose, Cell Counting Kit-8, reverse transcription-quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot, we systematically elucidated the multifaceted effects of OMT. OMT dose-dependently inhibited critical antiviral proteins (PKR and Mx1) and modulated the expression of type I interferons and key cytokines (IFN-α, IFN-β, IL-6, and TNF-α), thereby affecting TLR3 signaling and its downstream elements (NF-κB and IRF-3). OMT’s antiviral efficacy extended beyond TLR3-mediated responses, suggesting its potential as a versatile antiviral agent. This study not only contributes to the growing body of research on the use of natural compounds as antiviral agents but also underscores the importance of further investigating the broader application of OMT for combating viral infections. Full article
(This article belongs to the Special Issue Strategies in the Design and Development of Antiviral Drugs)
Show Figures

Graphical abstract

16 pages, 323 KiB  
Review
Immunological and Clinical Responses to Vaccinations among Adults Living with HIV
by Carlo Bieńkowski, Zuzanna Żak, Filip Fijołek, Martyna Cholewik, Maciej Stępień, Agata Skrzat-Klapaczyńska and Justyna D. Kowalska
Life 2024, 14(5), 540; https://doi.org/10.3390/life14050540 - 24 Apr 2024
Viewed by 376
Abstract
People living with human immunodeficiency virus (HIV) are at higher risk of morbidity and mortality due to vaccine-preventable diseases. At the same time, they are less likely to respond to vaccinations, and might have a higher rate of vaccine adverse event and faster [...] Read more.
People living with human immunodeficiency virus (HIV) are at higher risk of morbidity and mortality due to vaccine-preventable diseases. At the same time, they are less likely to respond to vaccinations, and might have a higher rate of vaccine adverse event and faster waning of protective effect. International and national guidelines emphasize the importance of vaccinating people living with HIV against respiratory system disease pathogens including seasonal influenza, Streptococcus pneumoniae, and COVID-19, as well as against sexually transmitted infections, i.e., Hepatitis A and B (HAV, HBV) and human papillomavirus (HPV). This narrative review aims to provide a comprehensive examination of the current knowledge regarding the immune and clinical responses elicited by vaccinations in the older adult population living with HIV. Full article
(This article belongs to the Section Epidemiology)
13 pages, 3079 KiB  
Article
Inhibition Effects and Mechanisms of Marine Compound Mycophenolic Acid Methyl Ester against Influenza A Virus
by Zihan Wang, Lishan Sun, Hongwei Zhao, Mamadou Dioulde Sow, Yang Zhang and Wei Wang
Mar. Drugs 2024, 22(5), 190; https://doi.org/10.3390/md22050190 - 23 Apr 2024
Viewed by 384
Abstract
Influenza A virus (IAV) can cause infection and illness in a wide range of animals, including humans, poultry, and swine, and cause annual epidemics, resulting in thousands of deaths and millions of hospitalizations all over the world. Thus, there is an urgent need [...] Read more.
Influenza A virus (IAV) can cause infection and illness in a wide range of animals, including humans, poultry, and swine, and cause annual epidemics, resulting in thousands of deaths and millions of hospitalizations all over the world. Thus, there is an urgent need to develop novel anti-IAV drugs with high efficiency and low toxicity. In this study, the anti-IAV activity of a marine-derived compound mycophenolic acid methyl ester (MAE) was intensively investigated both in vitro and in vivo. The results showed that MAE inhibited the replication of different influenza A virus strains in vitro with low cytotoxicity. MAE can mainly block some steps of IAV infection post adsorption. MAE may also inhibit viral replication through activating the cellular Akt-mTOR-S6K pathway. Importantly, oral treatment of MAE can significantly ameliorate pneumonia symptoms and reduce pulmonary viral titers, as well as improving the survival rate of mice, and this was superior to the effect of oseltamivir. In summary, the marine compound MAE possesses anti-IAV effects both in vitro and in vivo, which merits further studies for its development into a novel anti-IAV drug in the future. Full article
Show Figures

Figure 1

11 pages, 2164 KiB  
Article
Mutation Trajectory of Omicron SARS-CoV-2 Virus, Measured by Principal Component Analysis
by Tomokazu Konishi and Toa Takahashi
COVID 2024, 4(4), 571-581; https://doi.org/10.3390/covid4040038 - 22 Apr 2024
Viewed by 495
Abstract
Since 2019, the SARS-CoV-2 virus has caused a global pandemic, resulting in widespread infections and ongoing mutations. Analyzing these mutations is essential for predicting future impacts. Unlike influenza mutations, SARS-CoV-2 mutations displayed distinct selective patterns that were concentrated in the spike protein and [...] Read more.
Since 2019, the SARS-CoV-2 virus has caused a global pandemic, resulting in widespread infections and ongoing mutations. Analyzing these mutations is essential for predicting future impacts. Unlike influenza mutations, SARS-CoV-2 mutations displayed distinct selective patterns that were concentrated in the spike protein and small ORFs. In contrast to the gradual accumulation seen in influenza mutations, SARS-CoV-2 mutations lead to the abrupt emergence of new variants and subsequent outbreaks. This phenomenon may be attributed to their targeted cellular substances; unlike the influenza virus, which has mutated to evade acquired immunity, SARS-CoV-2 appeared to mutate to target individuals who have not been previously infected. The Omicron variant, which emerged in late 2021, demonstrates significant mutations that set it apart from previous variants. The rapid mutation rate of SARS-CoV-2 has now reached a level comparable to 30 years of influenza variation. The most recent variant, JN.1, exhibits a discernible trajectory of change distinct from previous Omicron variants. Full article
(This article belongs to the Special Issue Analysis of Modeling and Statistics for COVID-19)
Show Figures

Figure 1

13 pages, 9904 KiB  
Article
Stability and Detection Limit of Avian Influenza, Newcastle Disease Virus, and African Horse Sickness Virus on Flinders Technology Associates Card by Conventional Polymerase Chain Reaction
by Machimaporn Taesuji, Khate Rattanamas, Peter B. Yim and Sakchai Ruenphet
Animals 2024, 14(8), 1242; https://doi.org/10.3390/ani14081242 - 21 Apr 2024
Viewed by 583
Abstract
The Flinders Technology Associates (FTA) card, a cotton-based cellulose membrane impregnated with a chaotropic agent, effectively inactivates infectious microorganisms, lyses cellular material, and fixes nucleic acid. The aim of this study is to assess the stability and detection limit of various RNA viruses, [...] Read more.
The Flinders Technology Associates (FTA) card, a cotton-based cellulose membrane impregnated with a chaotropic agent, effectively inactivates infectious microorganisms, lyses cellular material, and fixes nucleic acid. The aim of this study is to assess the stability and detection limit of various RNA viruses, especially the avian influenza virus (AIV), Newcastle disease virus (NDV), and African horse sickness virus (AHSV), on the FTA card, which could significantly impact virus storage and transport practices. To achieve this, each virus dilution was inoculated onto an FTA card and stored at room temperature in plastic bags for durations ranging from 1 week to 6 months. Following storage, the target genome was detected using conventional reverse transcription polymerase chain reaction. The present study demonstrated that the detection limit of AIV ranged from 1.17 to 6.17 EID50 values over durations ranging from 1 week to 5 months, while for NDV, it ranged from 2.83 to 5.83 ELD50 over the same duration. Additionally, the detection limit of AHSV was determined as 4.01 PFU for both 1 and 2 weeks, respectively. Based on the demonstrated effectiveness, stability, and safety implications observed in the study, FTA cards are recommended for virus storage and transport, thus facilitating the molecular detection and identification of RNA viral pathogens. Full article
(This article belongs to the Special Issue General Epidemiology of Animal Viruses)
Show Figures

Figure 1

16 pages, 3759 KiB  
Article
Simultaneous Detection of Porcine Respiratory Coronavirus, Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Pseudorabies Virus via Quadruplex One-Step RT-qPCR
by Yan Ma, Kaichuang Shi, Zhenhai Chen, Yuwen Shi, Qingan Zhou, Shenglan Mo, Haina Wei, Liping Hu and Meilan Mo
Pathogens 2024, 13(4), 341; https://doi.org/10.3390/pathogens13040341 - 19 Apr 2024
Viewed by 411
Abstract
Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it [...] Read more.
Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it very difficult to accurately differentially diagnose these diseases on site. In this study, a quadruplex one-step reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PRCoV, PRRSV, SIV, and PRV was established. The assay showed strong specificity, high sensitivity, and good repeatability. It could detect only PRCoV, PRRSV, SIV, and PRV, without cross-reactions with TGEV, PEDV, PRoV, ASFV, FMDV, PCV2, PDCoV, and CSFV. The limits of detection (LODs) for PRCoV, PRRSV, SIV, and PRV were 129.594, 133.205, 139.791, and 136.600 copies/reaction, respectively. The intra-assay and inter-assay coefficients of variation (CVs) ranged from 0.29% to 1.89%. The established quadruplex RT-qPCR was used to test 4909 clinical specimens, which were collected in Guangxi Province, China, from July 2022 to September 2023. PRCoV, PRRSV, SIV, and PRV showed positivity rates of 1.36%, 10.17%, 4.87%, and 0.84%, respectively. In addition, the previously reported RT-qPCR was also used to test these specimens, and the agreement between these methods was higher than 99.43%. The established quadruplex RT-qPCR can accurately detect these four porcine respiratory viruses simultaneously, providing an accurate and reliable detection technique for clinical diagnosis. Full article
(This article belongs to the Special Issue Veterinary Viral Infections and Host Immune Responses)
Show Figures

Figure 1

12 pages, 3870 KiB  
Article
Rapid and Sensitive Detection of Influenza B Virus Employing Nanocomposite Spheres Based on Ag-Doped ZnIn2S4 Quantum Dots
by Jia-Xuan Hu, Li-Bang Zhu, Sheng-Tong Wu and Shou-Nian Ding
Chemosensors 2024, 12(4), 68; https://doi.org/10.3390/chemosensors12040068 - 19 Apr 2024
Viewed by 416
Abstract
Lateral flow immunoassay (LFIA) technology serves a significant role as a simple and rapid biosensor in the detection of influenza viruses. The focus of this study is the development of a rapid and convenient screening method for influenza B virus (IBV) proteins using [...] Read more.
Lateral flow immunoassay (LFIA) technology serves a significant role as a simple and rapid biosensor in the detection of influenza viruses. The focus of this study is the development of a rapid and convenient screening method for influenza B virus (IBV) proteins using a fluorescence lateral flow biosensor based on Ag-doped ZnIn2S4 quantum dots (Ag: ZIS QDs) as signal reporters. These Ag: ZIS QDs-emitting orange fluorescence are loaded onto dendritic mesoporous silica nanoparticles (DMSNs) and are further coated with a layer of silica shell to form a core–shell structured composite nanomaterial (SiO2 @ Ag: ZIS QDs @ DMSNs). The orange fluorescence effectively eliminates the interference of blue background fluorescence, significantly enhancing the detection sensitivity. This technology demonstrates outstanding performance in the immediate detection of IBV, with a minimum detection limit of 1 ng/mL, compared to the traditional colloidal gold strip with a detection limit of 6 ng/mL. Furthermore, both intra-assay and inter-assay coefficients of variation (CV) are less than 9%. This method holds promise for wide application in early diagnosis, epidemiological investigation, and epidemic surveillance of IBV. Full article
(This article belongs to the Special Issue Rapid Point-of-Care Testing Technology and Application)
Show Figures

Figure 1

17 pages, 1133 KiB  
Review
Alterations in CX3CL1 Levels and Its Role in Viral Pathogenesis
by Chunmei Zhang, Yusi Zhang, Ran Zhuang, Kun Yang, Lihua Chen, Boquan Jin, Ying Ma, Yun Zhang and Kang Tang
Int. J. Mol. Sci. 2024, 25(8), 4451; https://doi.org/10.3390/ijms25084451 - 18 Apr 2024
Viewed by 602
Abstract
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique [...] Read more.
CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases. Full article
Show Figures

Figure 1

17 pages, 802 KiB  
Article
Detection and Characterization of Influenza A Virus Endemic Circulation in Suckling and Nursery Pigs Originating from Vaccinated Farms in the Same Production System
by Alessandra Silva Dias, Amy L. Vincent Baker, Rodney B. Baker, Jianqiang Zhang, Michael A. Zeller, Pravina Kitikoon and Phillip C. Gauger
Viruses 2024, 16(4), 626; https://doi.org/10.3390/v16040626 - 18 Apr 2024
Viewed by 550
Abstract
Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV [...] Read more.
Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows. Full article
(This article belongs to the Special Issue Advances in Animal Influenza Virus Research: Third Edition)
Show Figures

Figure 1

13 pages, 1748 KiB  
Article
Phylodynamic and Evolution of the Hemagglutinin (HA) and Neuraminidase (NA) Genes of Influenza A(H1N1) pdm09 Viruses Circulating in the 2009 and 2023 Seasons in Italy
by Fabio Scarpa, Leonardo Sernicola, Stefania Farcomeni, Alessandra Ciccozzi, Daria Sanna, Marco Casu, Marco Vitale, Alessia Cicenia, Marta Giovanetti, Chiara Romano, Francesco Branda, Massimo Ciccozzi and Alessandra Borsetti
Pathogens 2024, 13(4), 334; https://doi.org/10.3390/pathogens13040334 - 17 Apr 2024
Viewed by 474
Abstract
The influenza A(H1N1) pdm09 virus, which emerged in 2009, has been circulating seasonally since then. In this study, we conducted a comprehensive genome-based investigation to gain a detailed understanding of the genetic and evolutionary characteristics of the hemagglutinin (HA) and neuraminidase (NA) surface [...] Read more.
The influenza A(H1N1) pdm09 virus, which emerged in 2009, has been circulating seasonally since then. In this study, we conducted a comprehensive genome-based investigation to gain a detailed understanding of the genetic and evolutionary characteristics of the hemagglutinin (HA) and neuraminidase (NA) surface proteins of A/H1N1pdm09 strains circulating in Italy over a fourteen-year period from 2009 to 2023 in relation to global strains. Phylogenetic analysis revealed rapid transmission and diversification of viral variants during the early pandemic that clustered in clade 6B.1. In contrast, limited genetic diversity was observed during the 2023 season, probably due to the genetic drift, which provides the virus with a constant adaptability to the host; furthermore, all isolates were split into two main groups representing two clades, i.e., 6B.1A.5a.2a and its descendant 6B.1A.5a.2a.1. The HA gene showed a faster rate of evolution compared to the NA gene. Using FUBAR, we identified positively selected sites 41 and 177 for HA and 248, 286, and 455 for NA in 2009, as well as sites 22, 123, and 513 for HA and 339 for NA in 2023, all of which may be important sites related to the host immune response. Changes in glycosylation acquisition/loss at prominent sites, i.e., 177 in HA and 248 in NA, should be considered as a predictive tool for early warning signs of emerging pandemics, and for vaccine and drug development. Full article
(This article belongs to the Special Issue Advance in Influenza A and Influenza B Viruses)
Show Figures

Figure 1

Back to TopTop