Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (934)

Search Parameters:
Keywords = inactivated vaccines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1668 KiB  
Article
MV140 Mucosal Vaccine Induces Targeted Immune Response for Enhanced Clearance of Uropathogenic E. coli in Experimental Urinary Tract Infection
by Paula Saz-Leal, Marianne Morris Ligon, Carmen María Diez-Rivero, Diego García-Ayuso, Soumitra Mohanty, Marcos Viñuela, Irene Real-Arévalo, Laura Conejero, Annelie Brauner, José Luis Subiza and Indira Uppugunduri Mysorekar
Vaccines 2024, 12(5), 535; https://doi.org/10.3390/vaccines12050535 (registering DOI) - 14 May 2024
Abstract
MV140 is an inactivated whole-cell bacterial mucosal vaccine with proven clinical efficacy against recurrent urinary tract infections (UTIs). These infections are primarily caused by uropathogenic E. coli (UPEC) strains, which are unique in their virulence factors and remarkably diverse. MV140 contains a non-UPEC [...] Read more.
MV140 is an inactivated whole-cell bacterial mucosal vaccine with proven clinical efficacy against recurrent urinary tract infections (UTIs). These infections are primarily caused by uropathogenic E. coli (UPEC) strains, which are unique in their virulence factors and remarkably diverse. MV140 contains a non-UPEC strain, suggesting that it may induce an immune response against different UPEC-induced UTIs in patients. To verify this, we experimentally evaluated the cellular and humoral responses to UTI89, a prototypical UPEC strain, in mice vaccinated with MV140, as well as the degree of protection achieved in a UPEC UTI89 model of acute cystitis. The results show that both cellular (Th1/Th17) and antibody (IgG/IgA) responses to UTI89 were induced in MV140-immunized mice. MV140 vaccination resulted in an early increased clearance of UTI89 viable bacteria in the bladder and urine following transurethral infection. This was accompanied by a highly significant increase in CD4+ T cells in the bladder and an increase in urinary neutrophils. Collectively, our results support that MV140 induces cross-reactive humoral and cellular immune responses and cross-protection against UPEC strains. Full article
(This article belongs to the Special Issue Bacterial Vaccine: Mucosal Immunity and Implications)
Show Figures

Figure 1

15 pages, 3612 KiB  
Article
Antibody Response after Homologous and Heterologous Prime–Boost COVID-19 Vaccination in a Bangladeshi Residential University Cohort
by Nihad Adnan, Md. Ahsanul Haq, Salma Akter, S. M. Shafiul Alam Sajal, Md. Fokhrul Islam, Taslin Jahan Mou, Mohd. Raeed Jamiruddin, Fatema Tuz Jubyda, Md. Salequl Islam, Jamsheda Ferdous Tuli, Syeda Moriam Liza, Sharif Hossain, Zinia Islam, Sohel Ahmed, Shahad Saif Khandker, Rubel Hossain, Md. Firoz Ahmed, Mohib Ullah Khondoker, Nafisa Azmuda and Md. Anowar Khasru Parvez
Vaccines 2024, 12(5), 482; https://doi.org/10.3390/vaccines12050482 - 30 Apr 2024
Viewed by 646
Abstract
COVID-19 vaccination strategies, including heterologous prime–boost regimens and additional booster doses, aim to optimize immune responses. However, seroepidemiological studies on immune responses to different COVID-19 vaccine types and schedules remain limited. This study investigated antibody levels following homologous and heterologous prime-and-boost COVID-19 vaccination [...] Read more.
COVID-19 vaccination strategies, including heterologous prime–boost regimens and additional booster doses, aim to optimize immune responses. However, seroepidemiological studies on immune responses to different COVID-19 vaccine types and schedules remain limited. This study investigated antibody levels following homologous and heterologous prime-and-boost COVID-19 vaccination in Bangladesh. In a cohort of 606 participants who received first/second/booster doses of vaccines (AstraZeneca, Moderna, Pfizer-BioNTech, and Sinopharm), anti-spike IgG and anti-nucleocapsid IgG levels were measured. Antibody titer variations with respect to age, gender, intervals between doses, and prior infection status were analyzed. mRNA vaccines elicited the highest antibody levels after homologous and heterologous boosting. The AstraZeneca booster resulted in a sharp titer decline rate of ~0.04 units per day. Second or booster vaccine doses significantly increased antibody levels, especially in males (p < 0.05). Older age correlated with higher titers, likely reflecting previous infection, which was further confirmed by the elevation of anti-nucleocapsid IgG levels. About 95.5% of non-Sinopharm recipients were anti-nucleocapsid IgG positive, suggesting prior exposure exceeding self-reported infections (12.5%). mRNA and heterologous COVID-19 boosting enhances humoral immunity over homologous prime–boost vector/inactivated vaccination. However, waning immunity merits further investigation across vaccine platforms. Full article
Show Figures

Figure 1

19 pages, 3589 KiB  
Article
Immunogenicity and Protective Efficacy of Psoralen-Inactivated SARS-CoV-2 Vaccine in Nonhuman Primates
by John W. Sanders, Daniel Ewing, Appavu K. Sundaram, Christopher Scott Gamble, Maria Blevins, Zhaodong Liang, Leigh Ann Sanders, David A. Ornelles, Peifang Sun, Klara Lenart, Hendrik Feuerstein, Karin Loré, Nikolai Petrovsky, Maya Williams and Kevin R. Porter
Vaccines 2024, 12(5), 451; https://doi.org/10.3390/vaccines12050451 - 24 Apr 2024
Viewed by 679
Abstract
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted public health and the economy worldwide. Most of the currently licensed COVID-19 vaccines act by inhibiting the receptor-binding function of the SARS-CoV-2 spike protein. The constant emergence of SARS-CoV-2 variants [...] Read more.
COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has significantly impacted public health and the economy worldwide. Most of the currently licensed COVID-19 vaccines act by inhibiting the receptor-binding function of the SARS-CoV-2 spike protein. The constant emergence of SARS-CoV-2 variants resulting from mutations in the receptor-binding domain (RBD) leads to vaccine immune evasion and underscores the importance of broadly acting COVID-19 vaccines. Inactivated whole virus vaccines can elicit broader immune responses to multiple epitopes of several antigens and help overcome such immune evasions. We prepared a psoralen-inactivated SARS-CoV-2 vaccine (SARS-CoV-2 PsIV) and evaluated its immunogenicity and efficacy in nonhuman primates (NHPs) when administered with the Advax-CpG adjuvant. We also evaluated the SARS-CoV-2 PsIV as a booster shot in animals vaccinated with a DNA vaccine that can express the full-length spike protein. The Advax-CpG-adjuvanted SARS-CoV-2 PsIV elicited a dose-dependent neutralizing antibody response in the NHPs, as measured using a serum microneutralization assay against the SARS-CoV-2 Washington strain and the Delta variant. The animals vaccinated with the DNA vaccine followed by a boosting dose of the SARS-CoV-2 PsIV exhibited the highest neutralizing antibody responses and were able to quickly clear infection after an intranasal challenge with the SARS-CoV-2 Delta variant. Overall, the data show that the Advax-CpG-adjuvanted SARS-CoV-2 PsIV, either by itself or as a booster shot following nucleic acid (NA) vaccines, has the potential to protect against emerging variants. Full article
(This article belongs to the Special Issue COVID Vaccines: Design, Development, and Immune Response Studies)
Show Figures

Figure 1

9 pages, 956 KiB  
Brief Report
Inactivated Split MERS-CoV Antigen Prevents Lethal Middle East Respiratory Syndrome Coronavirus Infections in Mice
by Heejeong Seo, Yunyueng Jang and Dongmi Kwak
Vaccines 2024, 12(4), 436; https://doi.org/10.3390/vaccines12040436 - 18 Apr 2024
Viewed by 799
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes fatal infections, with about 36% mortality in humans, and is endemic to the Middle East. MERS-CoV uses human dipeptidyl peptidase 4 (hDPP4) as a receptor for infection. Despite continued research efforts, no licensed vaccine is available [...] Read more.
Middle East respiratory syndrome coronavirus (MERS-CoV) causes fatal infections, with about 36% mortality in humans, and is endemic to the Middle East. MERS-CoV uses human dipeptidyl peptidase 4 (hDPP4) as a receptor for infection. Despite continued research efforts, no licensed vaccine is available for protection against this disease in humans. Therefore, this study sought to develop an inactivated fragmented MERS-CoV vaccine grown in Vero cells in an hDPP4-transgenic mouse model. Two-dose immunisation in mice with 15, 20, or 25 μg of spike proteins of inactivated split MERS-CoV antigens induced neutralising antibodies, with titres ranging from NT 80 to 1280. In addition, all immunised mice were completely protected, with no virus detection in tissues, weight loss, or mortality. The immunised splenocytes produced more cytokines that stimulate immune response (IFN-γ and TNF-α) than those that regulate it (IL-4 and IL-10). Taken together, the inactivated fragmented MERS-CoV vaccine is effective for the protection of mice against lethal MERS-CoV. Thus, the inactivated fragmented MERS-CoV vaccine warrants further testing in other hosts. Full article
Show Figures

Figure 1

17 pages, 802 KiB  
Article
Detection and Characterization of Influenza A Virus Endemic Circulation in Suckling and Nursery Pigs Originating from Vaccinated Farms in the Same Production System
by Alessandra Silva Dias, Amy L. Vincent Baker, Rodney B. Baker, Jianqiang Zhang, Michael A. Zeller, Pravina Kitikoon and Phillip C. Gauger
Viruses 2024, 16(4), 626; https://doi.org/10.3390/v16040626 - 18 Apr 2024
Viewed by 710
Abstract
Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV [...] Read more.
Inactivated influenza A virus (IAV) vaccines help reduce clinical disease in suckling piglets, although endemic infections still exist. The objective of this study was to evaluate the detection of IAV in suckling and nursery piglets from IAV-vaccinated sows from farms with endemic IAV infections. Eight nasal swab collections were obtained from 135 two-week-old suckling piglets from four farms every other week from March to September 2013. Oral fluid samples were collected from the same group of nursery piglets. IAV RNA was detected in 1.64% and 31.01% of individual nasal swabs and oral fluids, respectively. H1N2 was detected most often, with sporadic detection of H1N1 and H3N2. Whole-genome sequences of IAV isolated from suckling piglets revealed an H1 hemagglutinin (HA) from the 1B.2.2.2 clade and N2 neuraminidase (NA) from the 2002A clade. The internal gene constellation of the endemic H1N2 was TTTTPT with a pandemic lineage matrix. The HA gene had 97.59% and 97.52% nucleotide and amino acid identities, respectively, to the H1 1B.2.2.2 used in the farm-specific vaccine. A similar H1 1B.2.2.2 was detected in the downstream nursery. These data demonstrate the low frequency of IAV detection in suckling piglets and downstream nurseries from farms with endemic infections in spite of using farm-specific IAV vaccines in sows. Full article
(This article belongs to the Special Issue Advances in Animal Influenza Virus Research: Third Edition)
Show Figures

Figure 1

13 pages, 1904 KiB  
Article
Antibodies Induced by Smallpox Vaccination after at Least 45 Years Cross-React with and In Vitro Neutralize Mpox Virus: A Role for Polyclonal B Cell Activation?
by Sabrina Mariotti, Giulietta Venturi, Maria Vincenza Chiantore, Raffaela Teloni, Riccardo De Santis, Antonello Amendola, Claudia Fortuna, Giulia Marsili, Giorgia Grilli, Maria Stella Lia, Seble Tekle Kiros, Filippo Lagi, Alessandro Bartoloni, Angelo Iacobino, Raffaele Cresta, Marco Lastilla, Roberto Biselli, Paola Di Bonito, Florigio Lista and Roberto Nisini
Viruses 2024, 16(4), 620; https://doi.org/10.3390/v16040620 - 17 Apr 2024
Viewed by 687
Abstract
Aims: To evaluate whether antibodies specific for the vaccinia virus (VV) are still detectable after at least 45 years from immunization. To confirm that VV-specific antibodies are endowed with the capacity to neutralize Mpox virus (MPXV) in vitro. To test a possible role [...] Read more.
Aims: To evaluate whether antibodies specific for the vaccinia virus (VV) are still detectable after at least 45 years from immunization. To confirm that VV-specific antibodies are endowed with the capacity to neutralize Mpox virus (MPXV) in vitro. To test a possible role of polyclonal non-specific activation in the maintenance of immunologic memory. Methods: Sera were collected from the following groups: smallpox-vaccinated individuals with or without latent tuberculosis infection (LTBI), unvaccinated donors, and convalescent individuals after MPXV infection. Supernatant of VV- or MPXV-infected Vero cells were inactivated and used as antigens in ELISA or in Western blot (WB) analyses. An MPXV plaque reduction neutralization test (PRNT) was optimized and performed on study samples. VV- and PPD-specific memory T cells were measured by flow cytometry. Results: None of the smallpox unvaccinated donors tested positive in ELISA or WB analysis and their sera were unable to neutralize MPXV in vitro. Sera from all the individuals convalescing from an MPXV infection tested positive for anti-VV or MPXV IgG with high titers and showed MPXV in vitro neutralization capacity. Sera from most of the vaccinated individuals showed IgG anti-VV and anti-MPXV at high titers. WB analyses showed that positive sera from vaccinated or convalescent individuals recognized both VV and MPXV antigens. Higher VV-specific IgG titer and specific T cells were observed in LTBI individuals. Conclusions: ELISA and WB performed using supernatant of VV- or MPXV-infected cells are suitable to identify individuals vaccinated against smallpox at more than 45 years from immunization and individuals convalescing from a recent MPXV infection. ELISA and WB results show a good correlation with PRNT. Data confirm that a smallpox vaccination induces a long-lasting memory in terms of specific IgG and that antibodies raised against VV may neutralize MPXV in vitro. Finally, higher titers of VV-specific antibodies and higher frequency of VV-specific memory T cells in LTBI individuals suggest a role of polyclonal non-specific activation in the maintenance of immunologic memory. Full article
Show Figures

Figure 1

12 pages, 585 KiB  
Article
The Immunogenicity of Monovalent Oral Poliovirus Vaccine Type 1 (mOPV1) and Inactivated Poliovirus Vaccine (IPV) in the EPI Schedule of India
by Lalitendu Mohanty, T. Jacob John, Shailesh D. Pawar, Padmasani Venkat Ramanan, Sharad Agarkhedkar and Pradeep Haldar
Vaccines 2024, 12(4), 424; https://doi.org/10.3390/vaccines12040424 - 17 Apr 2024
Viewed by 751
Abstract
Background: In 2016, the Global Polio Eradication Initiative (GPEI) recommended the cessation of using type 2 oral poliovirus vaccine (OPV) and OPV, with countries having to switch from the trivalent to bivalent OPV (bOPV) with the addition of inactivated poliovirus vaccine (IPV) in [...] Read more.
Background: In 2016, the Global Polio Eradication Initiative (GPEI) recommended the cessation of using type 2 oral poliovirus vaccine (OPV) and OPV, with countries having to switch from the trivalent to bivalent OPV (bOPV) with the addition of inactivated poliovirus vaccine (IPV) in their routine immunization schedule. The current GPEI strategy 2022–2026 includes a bOPV cessation plan and a switch to IPV alone or a combination of vaccine schedules in the future. The focus of our study was to evaluate the immunogenicity of monovalent OPV type 1 (mOPV1) with IPV and IPV-only schedules. Methods: This was a three-arm, multi-center randomized–controlled trial conducted in 2016–2017 in India. Participants, at birth, were randomly assigned to the bOPV-IPV (Arm A) or mOPV1-IPV (Arm B) or IPV (Arm C) schedules. Serum specimens collected at birth and at 14, 18, and 22 weeks old were analyzed with a standard microneutralization assay for all the three poliovirus serotypes. Results: The results of 598 participants were analyzed. The type 1 cumulative seroconversion rates four weeks after the completion of the schedule at 18 weeks were 99.5% (97.0–99.9), 100.0% (97.9–100.0), and 96.0% (92.0–98.1) in Arms A (4bOPV + IPV), B (4mOPV1 + IPV), and C (3IPV), respectively. Type 2 and type 3 seroconversions at 18 weeks were 80.0% (73.7–85.1), 76.9% (70.3–82.4); 93.2% (88.5–96.1), 100.0% (98.0–100.0); and 81.9% (75.6–86.8), 99.4% (96.9–99.9), respectively, in the three arms. Conclusions: This study shows the high efficacy of different polio vaccines for serotype 1 in all three schedules. The type 1 seroconversion rate of mOPV1 is non-inferior to bOPV. All the vaccines provide high type-specific immunogenicity. The program can adopt the use of different vaccines or schedules depending on the epidemiology from time to time. Full article
Show Figures

Figure 1

10 pages, 1232 KiB  
Brief Report
Sex-Dependent Effects on Influenza-Specific Antibody Quantity and Neutralizing Activity following Vaccination of Newborn Non-Human Primates Is Determined by Adjuvants
by Beth C. Holbrook, Elene A. Clemens and Martha A. Alexander-Miller
Vaccines 2024, 12(4), 415; https://doi.org/10.3390/vaccines12040415 - 15 Apr 2024
Viewed by 660
Abstract
A number of studies have demonstrated the role of sex in regulating immune responses to vaccination. However, these findings have been limited to adults for both human and animal models. As a result, our understanding of the impact of sex on vaccine responses [...] Read more.
A number of studies have demonstrated the role of sex in regulating immune responses to vaccination. However, these findings have been limited to adults for both human and animal models. As a result, our understanding of the impact of sex on vaccine responses in the newborn is highly limited. Here, we probe this important question using a newborn non-human primate model. We leveraged our prior analysis of two cohorts of newborns, with one being mother-reared and one nursery-reared. This provided adequate numbers of males and females to interrogate the impact of sex on the response to inactivated influenza vaccines alone or adjuvanted with R848, flagellin, or both. We found that, in contrast to what has been reported in adults, the non-adjuvanted inactivated influenza virus vaccine induced similar levels of virus-specific IgG in male and female newborns. However, the inclusion of R848, either alone or in combination with flagellin, resulted in higher antibody titers in females compared to males. Sex-specific increases in the neutralizing antibody were only observed when both R848 and flagellin were present. These data, generated in the highly translational NHP newborn model, provide novel insights into the role of sex in the immune response of newborns. Full article
(This article belongs to the Section Influenza Virus Vaccines)
Show Figures

Figure 1

12 pages, 1640 KiB  
Article
Distinct Adverse Reactions to mRNA, Inactivated Virus, and Adenovirus Vector COVID-19 Vaccines: Insights from a Cohort Study on Atopic and Non-Atopic Subjects in Brazil
by Laura Alves Ribeiro Oliveira, Alessandro Sousa Correa, Thiago Alves de Jesus, Miguel Junior Sordi Bortolini, Ernesto Akio Taketomi and Rafael de Oliveira Resende
Vaccines 2024, 12(4), 408; https://doi.org/10.3390/vaccines12040408 - 12 Apr 2024
Viewed by 769
Abstract
The emergence of COVID-19 caused by SARS-CoV-2 prompted an unprecedented global response to develop vaccines at an accelerated pace. Messenger RNA (mRNA) and adenovirus vector vaccines emerged as the frontrunners in global immunization efforts, significantly reducing hospitalization, severity, and mortality, supplemented by inactivated [...] Read more.
The emergence of COVID-19 caused by SARS-CoV-2 prompted an unprecedented global response to develop vaccines at an accelerated pace. Messenger RNA (mRNA) and adenovirus vector vaccines emerged as the frontrunners in global immunization efforts, significantly reducing hospitalization, severity, and mortality, supplemented by inactivated virus-based vaccines in developing countries. However, concerns regarding adverse effects, including allergic reactions, have been raised. This study aimed to investigate the adverse effects following COVID-19 vaccination, particularly in atopic and non-atopic individuals. A cohort of 305 volunteers receiving BNT162, ChAdOx1, or CoronaVac vaccines were assessed based on a Skin Prick Test (SPT), specific IgE levels, and clinical history of asthma and rhinitis. Adverse effects were self-reported and scored across the different vaccination shots. The results indicated a notable presence of mild adverse effects following the first and third doses, regardless of vaccine type. ChAdOx1 recipients experienced more adverse effects compared to those receiving BNT162 and CoronaVac, including headaches, muscle pain, fever, chills, nausea, and flu-like symptoms. Atopic individuals receiving ChAdOx1 reported more adverse effects, such as muscle pain, fever, and chills, compared to non-atopic individuals. Conversely, headaches were more frequently reported in non-atopic individuals receiving BNT162 compared to atopic individuals. No anaphylaxis or allergic reactions were reported, indicating valuable evidence supporting the safety of COVID-19 vaccination in individuals with respiratory allergies. This study highlights the importance of understanding vaccine-related adverse effects, particularly in vulnerable populations, to inform vaccination strategies and address safety concerns in global immunization campaigns. Full article
Show Figures

Figure 1

23 pages, 5024 KiB  
Article
Minimal Determinants for Lifelong Antiviral Antibody Responses in Mice from a Single Exposure to Virus-like Immunogens at Low Doses
by Wei-Yun Wholey, Alexander R. Meyer, Sekou-Tidiane Yoda, Bryce Chackerian, Julie Zikherman and Wei Cheng
Vaccines 2024, 12(4), 405; https://doi.org/10.3390/vaccines12040405 - 11 Apr 2024
Viewed by 630
Abstract
The durability of an antibody (Ab) response is highly important for antiviral vaccines. However, due to the complex compositions of natural virions, the molecular determinants of Ab durability from viral infection or inactivated viral vaccines have been incompletely understood. Here we used a [...] Read more.
The durability of an antibody (Ab) response is highly important for antiviral vaccines. However, due to the complex compositions of natural virions, the molecular determinants of Ab durability from viral infection or inactivated viral vaccines have been incompletely understood. Here we used a reductionist system of liposome-based virus-like structures to examine the durability of Abs from primary immune responses in mice. This system allowed us to independently vary fundamental viral attributes and to do so without additional adjuvants to model natural viruses. We show that a single injection of protein antigens (Ags) orderly displayed on a virion-sized liposome is sufficient to induce a long-lived neutralizing Ab (nAb) response. The introduction of internal nucleic acids dramatically modulates the magnitude of Ab responses without an alteration of the long-term kinetic trends. These Abs are characterized by very slow off-rates of ~0.0005 s−1, which emerged as early as day 5 after injection and these off-rates are comparable to that of affinity-matured monoclonal Abs. A single injection of these structures at doses as low as 100 ng led to lifelong nAb production in mice. Thus, a minimal virus-like immunogen can give rise to potent and long-lasting antiviral Abs in a primary response in mice without live infection. This has important implications for understanding both live viral infection and for optimizing vaccine design. Full article
Show Figures

Figure 1

13 pages, 1995 KiB  
Article
Immune Response to an Inactivated Vaccine of SARS-CoV-2 (CoronaVac) in an Indigenous Brazilian Population: A Cohort Study
by Laís Albuquerque de Oliveira, Isa Rita Brito de Morais, Marcelo dos Santos Barbosa, Silvana Beutinger Marchioro, Layla Oliveira Campos Leite Machado, Michele Ferreira Marques, Tiago da Silva Ferreira, Gabriel Barroso de Almeida, Dyjaene de Oliveira Barbosa, Alex José Leite Torres and Simone Simionatto
Vaccines 2024, 12(4), 402; https://doi.org/10.3390/vaccines12040402 - 10 Apr 2024
Viewed by 667
Abstract
Introduction: Although the adaptive immune responses to the CoronaVac vaccine are known, their dynamics in indigenous communities remain unclear. In this study, we assessed the humoral and cellular immune responses to CoronaVac (Sinovac Biotech Life Sciences, 2021 NCT05225285, Beijing, China), in immunized Brazilian [...] Read more.
Introduction: Although the adaptive immune responses to the CoronaVac vaccine are known, their dynamics in indigenous communities remain unclear. In this study, we assessed the humoral and cellular immune responses to CoronaVac (Sinovac Biotech Life Sciences, 2021 NCT05225285, Beijing, China), in immunized Brazilian indigenous individuals. Methods: We conducted a prospective cohort study on indigenous Brazilian people between February 2021 and June 2021. Analyses of immune responses were carried out before (T1) and after a vaccination schedule was completed (T2). Demographic data were collected using a questionnaire. Results: We initially included 328 patients; among them, 120 (36.6%) had no SARS-CoV-2 antibodies. Peripheral blood mononuclear cells (PBMCs) were collected from 106 patients during follow-up visits, of which 91 samples were analyzed by immunophenotyping assay to detect SARS-CoV-2-specific memory T-cell response. Post-vaccination, the levels of memory B-cells and Natural Killer T-lymphocytes increased. Bororó village residents, females, and Terena ethnic group members had higher levels of anti-spike IgG antibodies post-vaccination, whereas alcohol and tobacco users had lower concentrations. Conclusions: To our best knowledge, this was the first comprehensive assessment of antibody and T-cell responses against CoronaVac vaccination in indigenous patients. Our findings showed that antibody response and T-cell immunity against SARS-CoV-2 were present in most patients following the vaccination schedule. Full article
Show Figures

Figure 1

11 pages, 1610 KiB  
Article
Evaluation of Immune Protection of a Bivalent Inactivated Vaccine against Aeromonas salmonicida and Vibrio vulnificus in Turbot
by Yunji Xiu, Jingyuan Yi, Ruixin Feng, Jiaxue Song, Yunfei Pang, Peng Liu and Shun Zhou
Fishes 2024, 9(4), 131; https://doi.org/10.3390/fishes9040131 - 9 Apr 2024
Viewed by 675
Abstract
The Aeromonas salmonicida is responsible for causing furunculosis in various fish species. Furunculosis is a ubiquitous disease that affects the aquaculture industry and causes the mass mortality of turbot. Vibrio vulnificus is a pathogen that causes skin ulcers and hemorrhagic septicemia in fish, [...] Read more.
The Aeromonas salmonicida is responsible for causing furunculosis in various fish species. Furunculosis is a ubiquitous disease that affects the aquaculture industry and causes the mass mortality of turbot. Vibrio vulnificus is a pathogen that causes skin ulcers and hemorrhagic septicemia in fish, resulting in significant mortality in aquaculture. In this study, we have established a bivalent inactivated vaccine against A. salmonicida and V. vulnificus with Montanide™ ISA 763 AVG as an adjuvant. This bivalent inactivated vaccine was used to immunize turbot by intraperitoneal injection, and the relevant immune indexes were detected. The results demonstrate that the bivalent inactivated vaccine exhibited a relative percent survival (RPS) of 77% following A. salmonicida and V. vulnificus intraperitoneal challenge. The vaccinated group exhibited higher levels of acid phosphatase activity and lysozyme activity compared to the control group. ELISA results showed a significant increase in serum antibody levels in immunized turbot, which was positively correlated with immunity. In the kidney tissue, related immune genes (TLR5, CD4, MHCI and MHCII) were up-regulated significantly, showing that the vaccine can induce cellular and humoral immune responses in turbot. In conclusion, the bivalent inactivated vaccine against A. salmonicida and V. vulnificus was immunogenic, efficiently preventing turbot from infection, which has the potential to be applied in aquaculture. Full article
(This article belongs to the Special Issue Fish Diseases Diagnostics and Prevention in Aquaculture)
Show Figures

Figure 1

14 pages, 2469 KiB  
Article
Correlation between 146S Antigen Content in Foot-and-Mouth Disease Inactivated Vaccines and Immunogenicity Level and Vaccine Potency Alternative Test Methods
by Yongxia Li, Ruai Yang, Fu Yin, Haisheng Zhang, Guoyuan Zhai, Shiqi Sun, Bo Tian and Qiaoying Zeng
Vet. Sci. 2024, 11(4), 168; https://doi.org/10.3390/vetsci11040168 - 8 Apr 2024
Viewed by 862
Abstract
To investigate the association between 146S antigen contents in FMD inactivated vaccines and levels of antiviral immunity, this study vaccinated 30 kg pigs with three batches of FMD types O and A bivalent inactivated vaccines. Antibody titers and interferon-gamma (IFN-γ) secretion levels were [...] Read more.
To investigate the association between 146S antigen contents in FMD inactivated vaccines and levels of antiviral immunity, this study vaccinated 30 kg pigs with three batches of FMD types O and A bivalent inactivated vaccines. Antibody titers and interferon-gamma (IFN-γ) secretion levels were measured on days 7, 14, 21, and 28 after primary immunization and on days 14 and 28 following booster immunization to assess associations between 146S contents and both antibody titers and IFN-γ secretion levels. Furthermore, 30 kg pigs were vaccinated with 46 batches of FMD type O inactivated vaccines and challenged on day 28, after which PD50 values were determined to evaluate the association between 146S content and PD50. The findings suggested that antibody titers and IFN-γ secretion levels at specific time points after immunization were positively associated with 146S contents. Additionally, 146S content showed a positive correlation with PD50, with greater PD50 values recorded for 146S contents ranging from 4.72 to 16.55 µg/dose. This investigation established a significant association between the 146S content in FMD inactivated vaccines and induced immune response against FMDV, thereby emphasizing its critical role in vaccine quality control. The determination of 146S content could serve as a new method for potency testing, offering an alternative to animal challenge tests. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

11 pages, 1985 KiB  
Article
Quantitation of Enterovirus A71 Empty and Full Particles by Sedimentation Velocity Analytical Ultracentrifugation
by Anna Yang, Yun Luo, Jie Yang, Tingbo Xie, Wenhui Wang, Xin Wan, Kaiwen Wang, Deqin Pang, Dongsheng Yang, Hanyu Dai, Jie Wu, Shengli Meng, Jing Guo, Zejun Wang and Shuo Shen
Viruses 2024, 16(4), 573; https://doi.org/10.3390/v16040573 - 8 Apr 2024
Viewed by 630
Abstract
The enterovirus A71 (EV71) inactivated vaccine is an effective intervention to control the spread of the virus and prevent EV71-associated hand, foot, and mouth disease (HFMD). It is widely administered to infants and children in China. The empty particles (EPs) and full particles [...] Read more.
The enterovirus A71 (EV71) inactivated vaccine is an effective intervention to control the spread of the virus and prevent EV71-associated hand, foot, and mouth disease (HFMD). It is widely administered to infants and children in China. The empty particles (EPs) and full particles (FPs) generated during production have different antigenic and immunogenic properties. However, the antigen detection methods currently used were established without considering the differences in antigenicity between EPs and FPs. There is also a lack of other effective analytical methods for detecting the different particle forms, which hinders the consistency between batches of products. In this study, we analyzed the application of sedimentation velocity analytical ultracentrifugation (SV-AUC) in characterizing the EPs and FPs of EV71. Our results showed that the proportions of the two forms could be quantified simultaneously by SV-AUC. We also determined the repeatability and accuracy of this method and found that both parameters were satisfactory. We assessed SV-AUC for bulk vaccine quality control, and our findings indicated that SV-AUC can be used effectively to analyze the percentage of EPs and FPs and monitor the consistency of the process to ensure the quality of the vaccine. Full article
(This article belongs to the Special Issue An Update on Enterovirus Research)
Show Figures

Figure 1

34 pages, 4010 KiB  
Review
Cellular and Molecular Immunity to Influenza Viruses and Vaccines
by Jane Kasten-Jolly and David A. Lawrence
Vaccines 2024, 12(4), 389; https://doi.org/10.3390/vaccines12040389 - 7 Apr 2024
Viewed by 863
Abstract
Immune responses to influenza (flu) antigens reflect memory of prior infections or vaccinations, which might influence immunity to new flu antigens. Memory of past antigens has been termed “original antigenic sin” or, more recently, “immune imprinting” and “seniority”. We have researched a comparison [...] Read more.
Immune responses to influenza (flu) antigens reflect memory of prior infections or vaccinations, which might influence immunity to new flu antigens. Memory of past antigens has been termed “original antigenic sin” or, more recently, “immune imprinting” and “seniority”. We have researched a comparison between the immune response to live flu infections and inactivated flu vaccinations. A brief history of antibody generation theories is presented, culminating in new findings about the immune-network theory and suggesting that a network of clones exists between anti-idiotypic antibodies and T cell receptors. Findings regarding the 2009 pandemic flu strain and immune responses to it are presented, including memory B cells and conserved regions within the hemagglutinin protein. The importance of CD4+ memory T cells and cytotoxic CD8+ T cells responding to both infections and vaccinations are discussed and compared. Innate immune cells, like natural killer (NK) cells and macrophages, are discussed regarding their roles in adaptive immune responses. Antigen presentation via macroautophagy processes is described. New vaccines in development are mentioned along with the results of some clinical trials. The manuscript concludes with how repeated vaccinations are impacting the immune system and a sketch of what might be behind the imprinting phenomenon, including future research directions. Full article
Show Figures

Figure 1

Back to TopTop