Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = rhabdovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3486 KiB  
Article
Heterologous Exchanges of Glycoprotein and Non-Virion Protein in Novirhabdoviruses: Assessment of Virulence in Yellow Perch (Perca flavescens) and Rainbow Trout (Oncorhynchus mykiss)
by Vikram N. Vakharia, Arun Ammayappan, Shamila Yusuff, Tarin M. Tesfaye and Gael Kurath
Viruses 2024, 16(4), 652; https://doi.org/10.3390/v16040652 - 22 Apr 2024
Viewed by 359
Abstract
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are rhabdoviruses in two different species belonging to the Novirhabdovirus genus. IHNV has a narrow host range restricted to trout and salmon species, and viruses in the M genogroup of IHNV have [...] Read more.
Infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV) are rhabdoviruses in two different species belonging to the Novirhabdovirus genus. IHNV has a narrow host range restricted to trout and salmon species, and viruses in the M genogroup of IHNV have high virulence in rainbow trout (Oncorhynchus mykiss). In contrast, the VHSV genotype IVb that invaded the Great Lakes in the United States has a broad host range, with high virulence in yellow perch (Perca flavescens), but not in rainbow trout. By using reverse-genetic systems of IHNV-M and VHSV-IVb strains, we generated six IHNV:VHSV chimeric viruses in which the glycoprotein (G), non-virion-protein (NV), or both G and NV genes of IHNV-M were replaced with the analogous genes from VHSV-IVb, and vice versa. These chimeric viruses were used to challenge groups of rainbow trout and yellow perch. The parental recombinants rIHNV-M and rVHSV-IVb were highly virulent in rainbow trout and yellow perch, respectively. Parental rIHNV-M was avirulent in yellow perch, and chimeric rIHNV carrying G, NV, or G and NV genes from VHSV-IVb remained low in virulence in yellow perch. Similarly, the parental rVHSV-IVb exhibited low virulence in rainbow trout, and chimeric rVHSV with substituted G, NV, or G and NV genes from IHNV-M remained avirulent in rainbow trout. Thus, the G and NV genes of either virus were not sufficient to confer high host-specific virulence when exchanged into a heterologous species genome. Some exchanges of G and/or NV genes caused a loss of host-specific virulence, providing insights into possible roles in viral virulence or fitness, and interactions between viral proteins. Full article
(This article belongs to the Special Issue The World of Rhabdoviruses)
Show Figures

Figure 1

10 pages, 1935 KiB  
Article
High-Throughput Sequencing Reveals Three Rhabdoviruses Persisting in the IRE/CTVM19 Cell Line
by Alexander G. Litov, Alexey M. Shchetinin, Ivan S. Kholodilov, Oxana A. Belova, Magomed N. Gadzhikurbanov, Anna Y. Ivannikova, Anastasia A. Kovpak, Vladimir A. Gushchin and Galina G. Karganova
Viruses 2024, 16(4), 576; https://doi.org/10.3390/v16040576 - 09 Apr 2024
Viewed by 460
Abstract
Cell cultures derived from ticks have become a commonly used tool for the isolation and study of tick-borne pathogens and tick biology. The IRE/CTVM19 cell line, originating from embryos of Ixodes ricinus, is one such line. Previously, reovirus-like particles, as well as [...] Read more.
Cell cultures derived from ticks have become a commonly used tool for the isolation and study of tick-borne pathogens and tick biology. The IRE/CTVM19 cell line, originating from embryos of Ixodes ricinus, is one such line. Previously, reovirus-like particles, as well as sequences with similarity to rhabdoviruses and iflaviruses, were detected in the IRE/CTVM19 cell line, suggesting the presence of multiple persisting viruses. Subsequently, the full genome of an IRE/CTVM19-associated rhabdovirus was recovered from a cell culture during the isolation of the Alongshan virus. In the current work, we used high-throughput sequencing to describe a virome of the IRE/CTVM19 cell line. In addition to the previously detected IRE/CTVM19-associated rhabdovirus, two rhabdoviruses were detected: Chimay rhabdovirus and Norway mononegavirus 1. In the follow-up experiments, we were able to detect both positive and negative RNA strands of the IRE/CTVM19-associated rhabdovirus and Norway mononegavirus 1 in the IRE/CTVM19 cells, suggesting their active replication in the cell line. Passaging attempts in cell lines of mammalian origin failed for all three discovered rhabdoviruses. Full article
(This article belongs to the Special Issue Insect-Specific Viruses 2.0)
Show Figures

Figure 1

8 pages, 1428 KiB  
Brief Report
Sequences Related to Chimay Rhabdovirus Are Widely Distributed in Ixodes ricinus Ticks across England and Wales
by Mirjam Schilling, Megan Golding, Ben P. Jones, Karen L. Mansfield, Sara Gandy, Jolyon Medlock and Nicholas Johnson
Viruses 2024, 16(4), 504; https://doi.org/10.3390/v16040504 - 26 Mar 2024
Viewed by 709
Abstract
Ticks are the main arthropod vector of pathogens to humans and livestock in the British Isles. Despite their role as a vector of disease, many aspects of tick biology, ecology, and microbial association are poorly understood. To address this, we investigated the composition [...] Read more.
Ticks are the main arthropod vector of pathogens to humans and livestock in the British Isles. Despite their role as a vector of disease, many aspects of tick biology, ecology, and microbial association are poorly understood. To address this, we investigated the composition of the microbiome of adult and nymphal Ixodes ricinus ticks. The ticks were collected on a dairy farm in Southwest England and RNA extracted for whole genome sequencing. Sequences were detected from a range of microorganisms, particularly tick-associated viruses, bacteria, and nematodes. A majority of the viruses were attributed to phlebo-like and nairo-like virus groups, demonstrating a high degree of homology with the sequences present in I. ricinus from mainland Europe. A virus sharing a high sequence identity with Chimay rhabdovirus, previously identified in ticks from Belgium, was detected. Further investigations of I. ricinus ticks collected from additional sites in England and Wales also identified Chimay rhabdovirus viral RNA with varying prevalence in all tick populations. This suggests that Chimay rhabdovirus has a wide distribution and highlights the need for an extended exploration of the tick microbiome in the United Kingdom (UK). Full article
(This article belongs to the Special Issue The World of Rhabdoviruses)
Show Figures

Figure 1

0 pages, 5852 KiB  
Article
Rhabdoviral Endogenous Sequences Identified in the Leishmaniasis Vector Lutzomyia longipalpis Are Widespread in Sandflies from South America
by Antonio J. Tempone, Monique de Souza Zezza-Ramalho, Daniel Borely, André N. Pitaluga, Reginaldo Peçanha Brazil, Sinval P. Brandão-Filho, Felipe A. C. Pessoa, Rafaela V. Bruno, Filipe A. Carvalho-Costa, Oscar D. Salomón, Petr Volf, Barbara A. Burleigh, Eric R. G. R. Aguiar and Yara M. Traub-Cseko
Viruses 2024, 16(3), 395; https://doi.org/10.3390/v16030395 - 02 Mar 2024
Viewed by 1670
Abstract
Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of viruses while little is known about the capacity of New World insects to transmit viruses to humans. Here, we relate the identification of RNA sequences with homology to [...] Read more.
Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of viruses while little is known about the capacity of New World insects to transmit viruses to humans. Here, we relate the identification of RNA sequences with homology to rhabdovirus nucleocapsids (NcPs) genes, initially in the Lutzomyia longipalpis LL5 cell lineage, named NcP1.1 and NcP2. The Rhabdoviridae family never retrotranscribes its RNA genome to DNA. The sequences here described were identified in cDNA and DNA from LL-5 cells and in adult insects indicating that they are transcribed endogenous viral elements (EVEs). The presence of NcP1.1 and NcP2 in the L. longipalpis genome was confirmed in silico. In addition to showing the genomic location of NcP1.1 and NcP2, we identified another rhabdoviral insertion named NcP1.2. Analysis of small RNA molecules derived from these sequences showed that NcP1.1 and NcP1.2 present a profile consistent with elements targeted by primary piRNAs, while NcP2 was restricted to the degradation profile. The presence of NcP1.1 and NcP2 was investigated in sandfly populations from South America and the Old World. These EVEs are shared by different sandfly populations in South America while none of the Old World species studied presented the insertions. Full article
(This article belongs to the Section Insect Viruses)
Show Figures

Figure 1

17 pages, 4523 KiB  
Article
Two Novel Betarhabdovirins Infecting Ornamental Plants and the Peculiar Intracellular Behavior of the Cytorhabdovirus in the Liana Aristolochia gibertii
by Pedro Luis Ramos-González, Maria Amelia Vaz Alexandre, Matheus Potsclam-Barro, Lígia Maria Lembo Duarte, Gianluca L. Michea Gonzalez, Camila Chabi-Jesus, Alyne F. Ramos, Ricardo Harakava, Harri Lorenzi, Juliana Freitas-Astúa and Elliot Watanabe Kitajima
Viruses 2024, 16(3), 322; https://doi.org/10.3390/v16030322 - 21 Feb 2024
Viewed by 782
Abstract
Two novel members of the subfamily Betarhabdovirinae, family Rhabdoviridae, were identified in Brazil. Overall, their genomes have the typical organization 3′-N-P-P3-M-G-L-5′ observed in mono-segmented plant-infecting rhabdoviruses. In aristolochia-associated cytorhabdovirus (AaCV), found in the liana aristolochia (Aristolochia gibertii Hook), an [...] Read more.
Two novel members of the subfamily Betarhabdovirinae, family Rhabdoviridae, were identified in Brazil. Overall, their genomes have the typical organization 3′-N-P-P3-M-G-L-5′ observed in mono-segmented plant-infecting rhabdoviruses. In aristolochia-associated cytorhabdovirus (AaCV), found in the liana aristolochia (Aristolochia gibertii Hook), an additional short orphan ORF encoding a transmembrane helix was detected between P3 and M. The AaCV genome and inferred encoded proteins share the highest identity values, consistently < 60%, with their counterparts of the yerba mate chlorosis-associated virus (Cytorhabdovirus flaviyerbamate). The second virus, false jalap virus (FaJV), was detected in the herbaceous plant false jalap (Mirabilis jalapa L.) and represents together with tomato betanucleorhabdovirus 2, originally found in tomato plants in Slovenia, a tentative new species of the genus Betanucleorhabdovirus. FaJV particles accumulate in the perinuclear space, and electron-lucent viroplasms were observed in the nuclei of the infected cells. Notably, distinct from typical rhabdoviruses, most virions of AaCV were observed to be non-enclosed within membrane-bounded cavities. Instead, they were frequently seen in close association with surfaces of mitochondria or peroxisomes. Unlike FaJV, AaCV was successfully graft-transmitted to healthy plants of three species of the genus Aristolochia, while mechanical and seed transmission proved unsuccessful for both viruses. Data suggest that these viruses belong to two new tentative species within the subfamily Betarhabdovirinae. Full article
(This article belongs to the Special Issue The World of Rhabdoviruses)
Show Figures

Figure 1

13 pages, 3259 KiB  
Article
Structural Determination of the Australian Bat Lyssavirus Nucleoprotein and Phosphoprotein Complex
by Camilla M. Donnelly, Murray Stewart, Justin A. Roby, Vinod Sundaramoorthy and Jade K. Forwood
Viruses 2024, 16(1), 33; https://doi.org/10.3390/v16010033 - 23 Dec 2023
Viewed by 1331
Abstract
Australian bat lyssavirus (ABLV) shows similar clinical symptoms as rabies, but there are currently no protein structures available for ABLV proteins. In lyssaviruses, the interaction between nucleoprotein (N) and phosphoprotein (N) in the absence of RNA generates a complex (N0P) that [...] Read more.
Australian bat lyssavirus (ABLV) shows similar clinical symptoms as rabies, but there are currently no protein structures available for ABLV proteins. In lyssaviruses, the interaction between nucleoprotein (N) and phosphoprotein (N) in the absence of RNA generates a complex (N0P) that is crucial for viral assembly, and understanding the interface between these two proteins has the potential to provide insight into a key feature: the viral lifecycle. In this study, we used recombinant chimeric protein expression and X-ray crystallography to determine the structure of ABLV nucleoprotein bound to residues 1–40 of its phosphoprotein chaperone. Comparison of our results with the recently generated structure of RABV CVS-11 N0P demonstrated a highly conserved interface in this complex. Because the N0P interface is conserved in the lyssaviruses of phylogroup I, it is an attractive therapeutic target for multiple rabies-causing viral species. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

54 pages, 6211 KiB  
Article
Novel Tri-Segmented Rhabdoviruses: A Data Mining Expedition Unveils the Cryptic Diversity of Cytorhabdoviruses
by Nicolas Bejerman, Ralf Dietzgen and Humberto Debat
Viruses 2023, 15(12), 2402; https://doi.org/10.3390/v15122402 - 10 Dec 2023
Cited by 1 | Viewed by 989
Abstract
Cytorhabdoviruses (genus Cytorhabdovirus, family Rhabdoviridae) are plant-infecting viruses with enveloped, bacilliform virions. Established members of the genus Cytorhabdovirus have unsegmented single-stranded negative-sense RNA genomes (ca. 10–16 kb) which encode four to ten proteins. Here, by exploring large publicly available metatranscriptomics datasets, [...] Read more.
Cytorhabdoviruses (genus Cytorhabdovirus, family Rhabdoviridae) are plant-infecting viruses with enveloped, bacilliform virions. Established members of the genus Cytorhabdovirus have unsegmented single-stranded negative-sense RNA genomes (ca. 10–16 kb) which encode four to ten proteins. Here, by exploring large publicly available metatranscriptomics datasets, we report the identification and genomic characterization of 93 novel viruses with genetic and evolutionary cues of cytorhabdoviruses. Strikingly, five unprecedented viruses with tri-segmented genomes were also identified. This finding represents the first tri-segmented viruses in the family Rhabdoviridae, and they should be classified in a novel genus within this family for which we suggest the name “Trirhavirus”. Interestingly, the nucleocapsid and polymerase were the only typical rhabdoviral proteins encoded by those tri-segmented viruses, whereas in three of them, a protein similar to the emaravirus (family Fimoviridae) silencing suppressor was found, while the other predicted proteins had no matches in any sequence databases. Genetic distance and evolutionary insights suggest that all these novel viruses may represent members of novel species. Phylogenetic analyses, of both novel and previously classified plant rhabdoviruses, provide compelling support for the division of the genus Cytorhabdovirus into three distinct genera. This proposed reclassification not only enhances our understanding of the evolutionary dynamics within this group of plant rhabdoviruses but also illuminates the remarkable genomic diversity they encompass. This study not only represents a significant expansion of the genomics of cytorhabdoviruses that will enable future research on the evolutionary peculiarity of this genus but also shows the plasticity in the rhabdovirus genome organization with the discovery of tri-segmented members with a unique evolutionary trajectory. Full article
(This article belongs to the Special Issue The World of Rhabdoviruses)
Show Figures

Figure 1

13 pages, 1423 KiB  
Communication
Long-Read High-Throughput Sequencing (HTS) Revealed That the Sf-Rhabdovirus X+ Genome Contains a 3.7 kb Internal Duplication
by Hailun Ma, Trent J. Bosma and Arifa S. Khan
Viruses 2023, 15(10), 1998; https://doi.org/10.3390/v15101998 - 26 Sep 2023
Cited by 1 | Viewed by 830
Abstract
We previously reported a novel rhabdovirus produced from the Spodoptera frugiperda Sf9 cell line, designated as Sf-rhabdovirus X+ since it contained a unique accessory gene X. The Sf-rhabdovirus X+ genome sequence was generated using Sanger sequencing and short-read high-throughput sequencing (HTS). [...] Read more.
We previously reported a novel rhabdovirus produced from the Spodoptera frugiperda Sf9 cell line, designated as Sf-rhabdovirus X+ since it contained a unique accessory gene X. The Sf-rhabdovirus X+ genome sequence was generated using Sanger sequencing and short-read high-throughput sequencing (HTS). In this study, we have used long-read HTS technologies, PacBio’s single-molecule real-time sequencing and Oxford’s Nanopore RNA direct sequencing, to analyze the parent Sf9 cell line transcriptome and the virus RNA produced from an X+ cell clone, respectively. A unique 3.7 kb duplication was identified in the L gene between nucleotide position 8523 and 8524, preceded by a GA dinucleotide insertion. This duplication contained a partial G gene, the complete X gene, and a partial L gene, which extended from nucleotide positions 4767–8523 in the X+ virus. Thus, the X+ genome length is 17,361 nucleotides, and we have re-designated the virus as Sf-rhabdovirus X+3.7. The 3.7 kb duplication was found in all Sf9 cell clones producing the X+ variant virus. Furthermore, the Sf-rhabdovirus X+3.7 genome was stable at passage 30, which was the highest passage tested. These results highlight the importance of combining short-read and long-read technologies for accurately sequencing virus genomes using HTS. Full article
(This article belongs to the Section Insect Viruses)
Show Figures

Figure 1

14 pages, 3903 KiB  
Article
Oxygen-Sensing Protein Cysteamine Dioxygenase from Mandarin Fish Involved in the Arg/N-Degron Pathway and Siniperca chuatsi Rhabdovirus Infection
by Wenhui Liu, Jian He, Zhimin Li, Shaoping Weng, Changjun Guo and Jianguo He
Viruses 2023, 15(8), 1644; https://doi.org/10.3390/v15081644 - 28 Jul 2023
Cited by 1 | Viewed by 869
Abstract
Mammalia cysteamine (2-aminoethanethiol) dioxygenase (ADO) controls the stability of the regulator of G protein signaling 4 (RGS4) through the Cys branch of the Arg/N-degron pathway, thereby affecting the response of the body to hypoxia. However, the oxygen-sensing function of ADO remains unknown in [...] Read more.
Mammalia cysteamine (2-aminoethanethiol) dioxygenase (ADO) controls the stability of the regulator of G protein signaling 4 (RGS4) through the Cys branch of the Arg/N-degron pathway, thereby affecting the response of the body to hypoxia. However, the oxygen-sensing function of ADO remains unknown in teleost fish. Mandarin fish (Siniperca chuatsi) is one of the most important freshwater economic fishes in China. As the scale of the rearing density continues to increase, hypoxia has become an important factor threatening the growth of mandarin fish. Herein, the molecular characterization, the oxygen-sensing enzyme function, and the role in virus infection of ADO from mandarin fish (scADO) were explored. Bioinformation analysis results showed that scADO had all the molecular foundations for achieving thiol dioxygenase function: three histidine residues coordinated with Fe(II), PCO/ADO domain, and a “jelly roll” β-barrel structure. The expression pattern analysis showed that scAdo was highly expressed in the immune-related tissues, liver, and kidneys and responded to hypoxia on the expression level. Protein degradation experiment results revealed that scADO could lead to the degradation of RGS4 protein through the Cys branch of the Arg/N-degron pathway. Furthermore, the expression levels of scADO responded to fish virus infection. scADO could significantly promote the replication of Siniperca chuatsi rhabdovirus, and this was associated with its thiol dioxygenase activity. These findings not only demonstrate scADO as an oxygen-sensing protein in teleost fish, but are also of considerable importance for clarifying the contribution of the mechanism of hypoxia to the outbreaks of fish viruses. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

17 pages, 9564 KiB  
Article
A New Cell Line Derived from the Caudal Fin of the Dwarf Gourami (Trichogaster lalius) and Its Susceptibility to Fish Viruses
by Ye-Jin Jeong and Kwang-Il Kim
Biology 2023, 12(6), 829; https://doi.org/10.3390/biology12060829 - 07 Jun 2023
Cited by 2 | Viewed by 1413
Abstract
The detection of megalocytiviruses, especially the infectious spleen and kidney necrosis virus (ISKNV), in ornamental fish has increased with the rapid growth of the ornamental fish industry. In this study, dwarf gourami fin (DGF) cells derived from the caudal fin of the dwarf [...] Read more.
The detection of megalocytiviruses, especially the infectious spleen and kidney necrosis virus (ISKNV), in ornamental fish has increased with the rapid growth of the ornamental fish industry. In this study, dwarf gourami fin (DGF) cells derived from the caudal fin of the dwarf gourami (Trichogaster lalius), which is highly susceptible to red sea bream iridovirus (RSIV) and ISKNV, were established and characterized. The DGF cells were grown at temperatures ranging from 25 °C to 30 °C in Leibovitz’s L-15 medium supplemented with 15% fetal bovine serum and were subcultured for more than 100 passages, predominantly with epithelial-like cells. DGF cells had a diploid chromosome number of 2n = 44. Although the initial purpose of this study was to establish a cell line for the causative agents of red sea bream iridoviral disease (RSIV and ISKNV), DGF cells were also susceptible to rhabdoviruses (viral hemorrhagic septicemia virus, hirame rhabdovirus, and spring viraemia of carp virus), exhibiting a significant cytopathic effect characterized by cell rounding and lysis. Additionally, viral replication and virion morphology were confirmed using virus-specific conventional polymerase chain reaction and transmission electron microscopy. Furthermore, both RSIV and ISKNV were replicated at high concentrations in DGF cells compared to other cell lines. Notably, the DGF cells maintained a monolayer during ISKNV infection, indicating the possibility of persistent infection. Thus, DGF can be used for viral diagnosis and may play a critical role in advancing our understanding of ISKNV pathogenesis. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

35 pages, 951 KiB  
Review
Viral Vectors in Gene Therapy: Where Do We Stand in 2023?
by Kenneth Lundstrom
Viruses 2023, 15(3), 698; https://doi.org/10.3390/v15030698 - 07 Mar 2023
Cited by 24 | Viewed by 9810
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic [...] Read more.
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use. Full article
(This article belongs to the Special Issue Novel Viral Vectors for Gene Therapy 2023)
Show Figures

Figure 1

14 pages, 314 KiB  
Review
Review on the Antiviral Organic Agents against Fish Rhabdoviruses
by Shuang-Shuang Sun, Shi-Wei Ma, Jun Li, Qin Zhang and Guang-Zhou Zhou
Fishes 2023, 8(1), 57; https://doi.org/10.3390/fishes8010057 - 16 Jan 2023
Cited by 5 | Viewed by 2253
Abstract
Fish rhabdoviruses are harmful single-stranded RNA viruses with high mortality rates which cause considerable economic losses in aquaculture. It is imperative to explore and develop new antiviral compounds against them. In recent years, in addition to inorganic antiviral substances, more than 50 different [...] Read more.
Fish rhabdoviruses are harmful single-stranded RNA viruses with high mortality rates which cause considerable economic losses in aquaculture. It is imperative to explore and develop new antiviral compounds against them. In recent years, in addition to inorganic antiviral substances, more than 50 different organic compounds have been confirmed to be effective in the prevention and treatment of rhabdovirus infection and its dissemination in fish. The main types of extracts or agents and their trial designs are here considered for review. This review reveals the reported antiviral activities of extracts from organisms, proteins, lipids, polysaccharides, nucleic acids, coumarin derivatives, arctigenin derivatives, and other antiviral organic molecules against fish rhabdoviruses, respectively. Additionally, their antiviral mechanisms of action include direct virucidal effects, inhibiting virus-induced host cell apoptosis, the blocking of the viral replication cycle, affecting gene expression and innate antiviral immune responses, and so on. This review also gives perspectives on how to comprehensively explore the potential applications of the candidate molecules, which lay the foundation for the future development of new compounds or strategies for the prevention and control of fish rhabdoviruses in aquaculture. Full article
14 pages, 2651 KiB  
Article
The Interaction of Mandarin Fish DDX41 with STING Evokes type I Interferon Responses Inhibiting Ranavirus Replication
by Xiao-Wei Qin, Zhi-Yong Luo, Wei-Qiang Pan, Jian He, Zhi-Min Li, Yang Yu, Chang Liu, Shao-Ping Weng, Jian-Guo He and Chang-Jun Guo
Viruses 2023, 15(1), 58; https://doi.org/10.3390/v15010058 - 24 Dec 2022
Cited by 5 | Viewed by 1707
Abstract
DDX41 is an intracellular DNA sensor that evokes type I interferon (IFN-I) production via the adaptor stimulator of interferon gene (STING), triggering innate immune responses against viral infection. However, the regulatory mechanism of the DDX41-STING pathway in teleost fish remains unclear. The mandarin [...] Read more.
DDX41 is an intracellular DNA sensor that evokes type I interferon (IFN-I) production via the adaptor stimulator of interferon gene (STING), triggering innate immune responses against viral infection. However, the regulatory mechanism of the DDX41-STING pathway in teleost fish remains unclear. The mandarin fish (Siniperca chuatsi) is a cultured freshwater fish species that is popular in China because of its high market value. With the development of a high-density cultural mode in mandarin fish, viral diseases have increased and seriously restricted the development of aquaculture, such as ranavirus and rhabdovirus. Herein, the role of mandarin fish DDX41 (scDDX41) and its DEAD and HELIC domains in the antiviral innate immune response were investigated. The level of scDDX41 expression was up-regulated following treatment with poly(dA:dT) or Mandarin fish ranavirus (MRV), suggesting that scDDX41 might be involved in fish innate immunity. The overexpression of scDDX41 significantly increased the expression levels of IFN-I, ISGs, and pro-inflammatory cytokine genes. Co-immunoprecipitation and pull-down assays showed that the DEAD domain of scDDX41 recognized the IFN stimulatory DNA and interacted with STING to activate IFN-I signaling pathway. Interestingly, the HELIC domain of scDDX41 could directly interact with the N-terminal of STING to induce the expression levels of IFN-I and ISGs genes. Furthermore, the scDDX41 could enhance the scSTING-induced IFN-I immune response and significantly inhibit MRV replication. Our work would be beneficial to understand the roles of teleost fish DDX41 in the antiviral innate immune response. Full article
(This article belongs to the Special Issue Fish Antiviral Immunity)
Show Figures

Figure 1

13 pages, 3894 KiB  
Article
Siniperca chuatsi Rhabdovirus (SCRV)-Induced Key Pathways and Major Antiviral Genes in Fish Cells
by Fei Ke, Xian-Yu Meng and Qi-Ya Zhang
Microorganisms 2022, 10(12), 2464; https://doi.org/10.3390/microorganisms10122464 - 13 Dec 2022
Cited by 2 | Viewed by 1717
Abstract
Fish rhabdoviruses, including Siniperca chuatsi rhabdovirus (SCRV), are epidemic pathogens that harm fish aquaculture. To clarify the interactions between SCRV and its host and explore antiviral targets, the present study performed transcriptome analysis in a cultured S. chuatsi skin cell line (SCSC) after [...] Read more.
Fish rhabdoviruses, including Siniperca chuatsi rhabdovirus (SCRV), are epidemic pathogens that harm fish aquaculture. To clarify the interactions between SCRV and its host and explore antiviral targets, the present study performed transcriptome analysis in a cultured S. chuatsi skin cell line (SCSC) after SCRV infection at 3, 12, 24, and 36 h post-infection (hpi). Comparison with control obtained 38, 353, 896, and 1452 differentially expressed genes (DEGs) in the detected time points, respectively. Further analysis of the Go terms and KEGG pathways revealed the key pathways “Cytokine-cytokine receptor interaction” and “interferon related pathways” in SCSC cells responding to SCRV infection. The significantly up-regulated genes in the pathways were also verified by qPCR. Furthermore, gene cloning and overexpression revealed that five interferon-stimulated genes (ISGs) IFI4407, IFI35, Viperin, IFIT1, and IFIT5 had the ability to inhibit SCRV replication in FHM (Fathead minnow) cells, especially an inhibition efficiency more than 50% was observed in IFI35 overexpressed cells. In summary, current study revealed the main innate immune pathways in S. chuatsi cells induced by SCRV infection and the major ISGs of S. chuatsi in controlling SCRV replication. Full article
(This article belongs to the Special Issue Microorganisms and Diseases Associated with Aquatic Animals)
Show Figures

Figure 1

30 pages, 3712 KiB  
Article
Culex Mosquito Piwi4 Is Antiviral against Two Negative-Sense RNA Viruses
by Elizabeth Walsh, Tran Zen B. Torres and Claudia Rückert
Viruses 2022, 14(12), 2758; https://doi.org/10.3390/v14122758 - 10 Dec 2022
Cited by 4 | Viewed by 1941
Abstract
Culex spp. mosquitoes transmit several pathogens concerning public health, including West Nile virus and Saint Louis encephalitis virus. Understanding the antiviral immune system of Culex spp. mosquitoes is important for reducing the transmission of these viruses. Mosquitoes rely on RNA interference (RNAi) to [...] Read more.
Culex spp. mosquitoes transmit several pathogens concerning public health, including West Nile virus and Saint Louis encephalitis virus. Understanding the antiviral immune system of Culex spp. mosquitoes is important for reducing the transmission of these viruses. Mosquitoes rely on RNA interference (RNAi) to control viral replication. While the siRNA pathway in mosquitoes is heavily studied, less is known about the piRNA pathway. The piRNA pathway in mosquitoes has recently been connected to mosquito antiviral immunity. In Aedes aegypti, Piwi4 has been implicated in antiviral responses. The antiviral role of the piRNA pathway in Culex spp. mosquitoes is understudied compared to Ae. aegypti. Here, we aimed to identify the role of PIWI genes and piRNAs in Culex quinquefasciatus and Culex tarsalis cells during virus infection. We examined the effect of PIWI gene silencing on virus replication of two arboviruses and three insect-specific viruses in Cx. quinquefasciatus derived cells (Hsu) and Cx. tarsalis derived (CT) cells. We show that Piwi4 is antiviral against the La Crosse orthobunyavirus (LACV) in Hsu and CT cells, and the insect-specific rhabdovirus Merida virus (MERDV) in Hsu cells. None of the silenced PIWI genes impacted replication of the two flaviviruses Usutu virus (USUV) and Calbertado virus, or the phasivirus Phasi-Charoen-like virus. We further used small RNA sequencing to determine that LACV-derived piRNAs, but not USUV-derived piRNAs were generated in Hsu cells and that PIWI gene silencing resulted in a small reduction in vpiRNAs. Finally, we determined that LACV-derived DNA was produced in Hsu cells during infection, but whether this viral DNA is required for vpiRNA production remains unclear. Overall, we expanded our knowledge on the piRNA pathway and how it relates to the antiviral response in Culex spp mosquitoes. Full article
(This article belongs to the Special Issue Bunyavirus, Volume II)
Show Figures

Figure 1

Back to TopTop